Miniatur autonomous systems

by Stephan Pareigis and Tim Tiedemann

Miniatur autonomous systems

by Stephan Pareigis and Tim Tiedemann

The development of miniature solutions for autonomous vehicles can be done for several purposes. First of all, this poses a challenge in various ways: miniaturization of mechanics, electronics, power supply. Construction of miniature vehicles poses special challenges for the development of software and hardware which lead to optimization of current technologies. Especially machine learning methods (e.g. deep learning) are difficult to apply in miniature vehicles due to the vast computational needs of ML methods. Now, going one step further is what we call miniature autonomy: When heading for a miniaturization down to very small sizes (e.g., scale 1:87 or smaller) new solutions need to be found. The old approaches are no longer applicable but new solutions, new algorithms need to arise. As soon as (partially) autonomous miniature vehicles are available, they open a completely new test option for developments in autonomous driving. Model vehicles offer a compromise between real world tests and abstract simulations. The apparent difference between sensor data of real environments and model environments is not relevant. Development of sensors and testing is done independently and are often not critical. The error which appear in miniature scale are one level higher, as in the first Tesla accident (one sensor detects an obstacle, another one doesn´t) or in the Uber accident (Volvo sensors supposedly have sensed the person but the corresponding reaction / driver assistance was switched off). The focus of miniature tests can be on edge cases, critical driving and traffic situations and, for example, the multiple repetition of actually uncritical situations (the collection of high test kilometers in everyday situations). Last but not least, there is the test case in which an autonomous system continues learning during operation. This is currently avoided and has to be tested extensively outside of public roads - for example in a miniature environment. Miniature Wonderland in Hamburg drive model cars based on the technology of the FALLER Car-System. Within the framework of final theses and projects at the Department of Computer Science of the HAW Hamburg, it is investigated whether real autonomous driving - without contact wire as in the FALLER system - is possible on the model roads on a scale of 1:87. To this end, model vehicles were developed and built on a scale of 1:63 and 1:87.

Videos

Publications

A neural network architecture for end-to-end autonomous driving is presented, which is robust against discrepancies in system dynamics …

Es werden Neuronale Netze zum Erkennen von Straßenmarkierungen trainiert. Dabei werden UNet Architekturen durch verschieden …

End-to-end approaches for autonomous driving gain popularity since NVIDIA demonstrated its capabilities with their PilotNet …

This thesis employs the idea of developing a hardware platform for a ROS-based autonomous street vehicle at 1:87 scale. First of all …

Auf einem Jetson Nano wird ein Hausschuh mithilfe von einem Faltungsnetz erkannt und verfolgt. Die Verfolgung des Objekts wird dabei …

Das selbständige erkennen von Kurven und Spurverläufen eines Fahrzeugs mittels Bilderkennung durch maschinelles Lernen wird in …

This paper presents a complete solution for real time, 30 frames per second, object detection and tracking using a SSD architecture for …

Eine autonome Spurhaltung, mit Hilfe eines Machine Learning Ansatzes, wird in dieser Projektausarbeitung beschrieben. Das Ziel ist es, …

Zur Klassifizierung von Verkehrsschildern mit neuronalen Netzen werden entsprechende Datensätze benötigt. Dabei ist die korrekte …

Lane detection is an important task when it comes to de- veloping advanced driver assistance systems (ADAS) and autonomous vehicles. …

Das Ziel dieses Artikels ist die Beschreibung des Vorgehens bei dem Versuch, eine auf Machine Learning basierende Lösung für ein …

Diese Arbeit soll einen Überblick über die Simultaneous localization and mapping (SLAM) Thematik geben. Die Betrachtung verschiedener …

Der End-to-End Learning Ansatz zieht immer mehr Interesse auf sich, da er die Möglichkeit bereitstellt ein Problem mit einem …

Diese Arbeit beschäftigt sich mit der Lokalisierung eines Miniaturschiffs. Die Lokalisierung basiert hierbei lediglich auf den …

This thesis deals with the construction of an autonomous driving, minimal system. The used processor is a microcontroller and the only …

In the current state of autonomous driving machine learning methods are dominating, especially for the envi- ronment recognition. For …

The main target of this project is to build an autonomous boat which can navigate through a simultaneously created map or a given one. …

Machine learning is more and more applied in our everyday life, but also safety critical systems are increasingly equipped with ML …

Im Wahlpflichtkurs „Deeply Embedded“ sollte zum Abschluss als kleines Projekt ein Roboter gebaut werden, der auf (insektenartigen) …