
Lane detection in miniature environments using
image segmentation

Markus Kasten1

HAW-Hamburg, Dept. for Computer Science

Abstract. Lane detection is an important task when it comes to de-
veloping advanced driver assistance systems (ADAS) and autonomous
vehicles. While much research is dedicated to real world vehicles, we
want to try a machine learning based lane detection approach in a 1:87
miniature environment. With a fixed network architecture, we experi-
ment with different training methods to learn how both existing real
world data and specialized training data for our environment affects
lane detection performance. While only using real world training data
granted usable results, using a low number of specialized training images
greatly improved performance. Yet, further experiments are necessary
for reliable lane detection.

Keywords: Machine Learning · Image Segmentation · Autonomous Driv-
ing · Lane detection · Miniature Autonomy

1 Introduction

Detecting driving lanes in a road environment is one of the most important
aspects of autonomous driving. Yet, while easily distinguishable for humans,
finding lanes in varying conditions using traditional image processing algorithms
is not an easy task. Using machine learning, we aim to provide a robust method
that can either assist algorithmic lane detection or fully replace it.

Since research on full size vehicles on public roads comes with significant
risks, we are using a 1:87 scale (H0-scale) environment for our tests. This in-
volves a miniature scale world, shown in Figure 1, has been purpose built to test
autonomous driving scenarios[5], as well as a scale vehicle equipped with a single
front facing camera and various sensors[6].

2 Related work

Lane detection is a very actively researched field. While traditional image pro-
cessing methods have been researched a long time ago[13][14], recent develop-
ments have shifted towards deep learning based methods. The following chapter
describes some of these methods and related works that have been created based
on them.



2 M. Kasten

Fig. 1. Miniature enviroment designed to test autonomous driving methods

3 Methods

The methods presented and used in this paper purely rely on color images from
the vehicles front facing camera. While other approaches also use LIDAR [1] [2]
or depth-sensing using stereo-cameras[8], this paper does not use these additional
data-sources as they are not available on our H0-scale vehicles as of now.

For extracting lane information from an image, we need to define a output
data representation. The output data format should be easy to work with in
further processing tasks, but also allow for complex lane shapes.

One representation is a set of polynomials in the form of p(x) = a0 + a1x +
a2x

2 + ... + anx
n using n coefficients, each of which is determined by a neural

network. It would allow very easy processing in e. g. lane keeping, but with a
fixed number of output variables and therefore fixed number of polynomials, the
complexity of detected lanes is limited. Representing intersections or turning
lanes at the same time with driving lanes can be error prone. This method was
used among others in PolyLaneNet [12] with a regression based approach.

Another output representation is to create an image of the same dimensions
as the input image, which has the lanes rendered as easy distinguishable lines.
Such an output format can be achieved by using a fully convolutional neural
network (FCNN) [7]. This approach is also called image segmentation, as the
image is segmented into semantic elements. If needed, spline data can be easily
extracted using conventional image processing methods. This method has be-
come very popular in recent years and is still very actively researched. Some
examples include SCNN[15] or ENet-SAD[4].

In this paper we focus on FCNNs, since this is the most common approach
and allows for more errors. We want to compare how the network performs



Lane detection in miniature environments using image segmentation 3

in respect to different types of training data, number of epochs and network
parameters.

3.1 Selecting a network architecture

With the goal of using a Google EdgeTPU in the future, we are limited to using
TensorFlow 2. This greatly reduces the availability of existing FCNN implemen-
tations. For it’s performance and speed, an ERFNet architecture[10] has been
selected and will be used throughout this paper. It only has 1, 988, 972 trainable
parameters, allowing fast training and inference.

This type of neural network consists of a encoder, also called downsampler,
and a decoder, also called upsampler. The encoder block uses a sequence of
convolution layers to process the input image, the decoder block uses a set of
deconvolution layers to generate the output image. In this paper we refer to the
output image of the network as its prediction.

We are using the Mean Squared Error function for calculating loss and the
Nadam optimizer with a learning rate of 0.001.

3.2 Labeling

We want our network to draw a line along the left and right limits of the ego-
lane. Other lanes such as intersections, parallel and oncoming lanes are ignored.
The limits of the ego-lane are usually defined by lane markers on both sides,
but one or both markers may be missing. Labels are drawn up to the vanishing
point, or to a point where lines are no longer separable. All lines are drawn with
a width of 10 pixels.

Three-channel images are used for the input and output of the network. Input
images are presented as an RGB image. Other color-spaces such as LAB or YUV
have been considered, but research has shown that performance gains between
color-spaces are negligible[3]. The output (prediction) uses the blue channel for
identifying the left lane limit and the red channel for the right lane limit. The
green channel is unused and always black, but could be used for identifying other
features in the future.

3.3 Gathering training data

Training datasets of annotated images for lane detection are available[2][15], but
aren’t designed to be used in 1:87-scale environments. Example image from the
LLAMAS and Culane datasets are shown in Figure 3 and 4 respectively, an
example image from our 1:87 vehicle is shown in Figure 2.

As part of the process, a total of 96 images have been hand-annotated, 53 of
which are used as training and validation data, 43 are used as test data. These
images have been annotated by drawing the lane markers by hand in a image
editor and therefore aren’t as precise as the automatic annotations from the
LLAMAS dataset.



4 M. Kasten

(a) Input (b) Mask

Fig. 2. Example image taken from the front facing camera of a vehicle in a 1:87 envi-
ronment (Miniatur Wunderland Hamburg)

(a) Input (b) Mask

Fig. 3. Random image taken from the LLAMAS dataset. These images are mostly
from a highway environment.

(a) Input (b) Mask

Fig. 4. Random image taken from the Culane dataset. These images are mostly from
a city environment with occlusions from the ego-vehicle, and very dense traffic.



Lane detection in miniature environments using image segmentation 5

All images and masks are scaled to a resolution of 1024× 512 pixels, making
a compromise of preserved detail in images, and training and inference perfor-
mance. Dimensions of 2n were chosen to avoid rounding errors in pooling layers
resulting in a different output resolution from the input resolution.

To increase the amount of data, all training and validation data are passed
through an image augmentation pipeline. Data augmentation is an effective
method for avoiding overfitting and increasing network performance[11]. This
pipeline varies brightness, contrast, hue and saturation of all images by a ran-
dom amount. These augmented images are then combined with the original data,
effectively doubling the dataset in size.

3.4 Experiments

We want to compare a number of different training methods for our segmentation
network. The experiments mostly differentiate in the combination of datasets
used as training data, but also vary in the total number of training images,
epochs and whether data augmentation is used. Experiments are listed in Table
1.

The number of training epochs has been chosen experimentally by monitoring
the loss graph. For training with LLAMAS and Culane data, 50 epochs have been
chosen as there aren’t any gains beyond this epoch (see Figure 5). For training
with our own very small dataset, 120 epochs are needed as shown in Figure 6.

0 10 20 30 40 50

Epoch

150

175

200

225

250

275

300

L
os

s

Loss graph when training with LLAMAS dataset

Validation loss

Train loss

Fig. 5. Plot of loss vs. epoch when training with the LLAMAS dataset



6 M. Kasten

0 20 40 60 80 100 120

Epoch

50

100

150

200

250

300

350
L

o
ss

Loss graph of training exclusively with our own dataset

Validation loss

Train loss

Fig. 6. Plot of loss vs. epoch when training with our own dataset

Each network is trained on a single NVIDIA Tesla V-100. The network is
then tested against the 43 images of our self-annotated test dataset.

Table 1. Table of training methods we are evaluating with our network

Datasets Total training images Augmentation Epochs Learning rate

LLAMAS 1000 Yes 50 0.001

LLAMAS 1000 No 50 0.001

LLAMAS+Culane 2000 Yes 50 0.001

LLAMAS+Culane 2000 No 50 0.001

Our dataset 53 Yes 120 0.001

Our dataset 53 No 120 0.001

LLAMAS+Culane+Ours 2053 Yes 50 0.001

LLAMAS+Culane+Ours 2053 No 50 0.001

4 Results

In this section we discuss results gathered by different methods of training the
neural network, and how we compare network performance.



Lane detection in miniature environments using image segmentation 7

4.1 Evaluation metrics

For comparing network performance, first the predicted masks by the neural
network is binarized, i. e. a pixel is either True or False. A threshold of 0.5
has been chosen for all tests. Three performance metrics have been selected,
first of which is the intersect over union (IoU, also called Jaccard-Coefficent) for
measuring the overlap of the predicted mask P and the ground truth T .

IoU =
|P ∩ T |
|P ∪ T |

We also compare the precision P and recall R using pixel-wise true positives
TP , true negatives TN , false positives FP and false negatives FN . Precision
tells us how many pixels had been correctly identified as a lane limit over all
detected pixels.

P =
TP

TP + FP

Recall describes the completeness of the predicted mask, comparing correctly
predictions against missing predictions.

R =
TP

TP + FN

For calculating each of the metrics of our defined training methods, all metrics
are calculated for every test image in our dataset, and then averaged over all
images.

4.2 Experiment results

The presented metrics have been calculated for all training methods. The results
are presented in Table 1 and plotted in Figure 7. The predictions of our network
are shown in Figure 8.

Table 2. Results for the each of the tested training methods. Best overall results are
highlighted.

Datasets IoU Precision Recall

LLAMAS Aug. 0.08249 0.08438 0.76453

LLAMAS 0.06047 0.06131 0.81897

LLAMAS+Culane Aug. 0.09159 0.09306 0.84416

LLAMAS+Culane 0.07182 0.07284 0.83067

LLAMAS+Culane+Own Aug. 0.11809 0.11969 0.87758

LLAMAS+Culane+Own 0.08103 0.08149 0.92407

Own Aug. 0.31011 0.41009 0.55226

Own 0.20347 0.23635 0.57879



8 M. Kasten

L
L

A
M

A
S

A
u

g.

L
L

A
M

A
S

L
L

A
M

A
S

+
C

u
la

n
e

A
u

g.

L
L

A
M

A
S

+
C

u
la

n
e

L
L

A
M

A
S

+
C

u
la

n
e+

O
w

n
A

u
g.

L
L

A
M

A
S

+
C

u
la

n
e+

O
w

n

O
w

n
A

u
g.

O
w

n0.
0

0.
2

0.
4

0.
6

0.
8

S
co

re
s

Score comparision between training methods

IoU

Precision

Recall

Fig. 7. Scores of different training methods plotted



Lane detection in miniature environments using image segmentation 9

When comparing training with and without augmented data, we can clearly
see an improvement when using augmented data. This result was expected as
data augmentation increases robustness and avoids overfitting to the given train-
ing data.

A slight improvement can be observed when Culane data was mixed with
LLAMAS data. This is expected as well, since additional data widens the variety
of inputs and further avoids overfitting. Additionally, Culane data is mostly from
city environments, which is more similar to the test data from the miniature
environment.

Adding annotated images from the miniature environment to the training
data improves results even more, despite only being a very small fraction of
training data (one image on 20 or 40 LLAMAS/Culane images).

Unexpected results were observed when training exclusively with our very
small dataset. While IoU and Precision metrics have improved by a factor of
over 3, Recall has decreased by nearly 40%.

(a) Input (b) Ground Truth (c) Prediction LLAMAS

(d) Prediction LLA-
MAS+Culane

(e) Prediction LLA-
MAS+Culane+Ours

(f) Prediction Ours

Fig. 8. Input and ground truth, with the prediction of each of our trained networks.
All shown networks are using augmented data.

4.3 Comparison with other research

LLAMAS has trained a DeepLabV3+ achieving an average precision of 31.2%
when tested against their test dataset. This value is higher than any of our
tests, excluding using just our own training data, which is expected when testing
against test data from another dataset.



10 M. Kasten

5 Conclusion

Our experiments have shown that purely relying on real world data for training
a network to identify lanes in 1:87 environment does not unlock the networks
full potential. Using data augmentation and adding even small amounts data
from a miniature environment improves results notably. We have also shown
that usable results can be achieved when only using a very small dataset of the
same environment, but these are likely the cause of overfitting and need further
testing and investigation.

To use the predictions of our network in an autonomous driving scenario,
further image processing is needed. A modified algorithm for lane detection
used in environments with easily distinguishable markers such as the Carolo-
Cup could be used, but this has not been tested so far.

6 Prospects

While the gathered results are satisfying, they are barely usable for reliable
autonomous driving in the used miniature environment. Instead of extracting
lanes from a single image, a series of images could be used to improve confidence
where lane markers are either occluded or not present.

Additionally, more advanced neural network architectures such as [9] or [12]
should be evaluated in the miniature environment.

Inference on a Google EdgeTPU has not been achieved as part of this paper
due to compatibility problems, but is still an option for future developments.

7 Acknowledgments

We thank Stephan Pareigis for introducing us to this field of research, and the
HAW Hamburg ITSC for providing significant computing resources, allowing
our comparisons in acceptable time frames. We also thank Luk Schwalb for the
useful discussions and suggestions on this paper.



Bibliography

[1] Min Bai, Gellért Máttyus, Namdar Homayounfar, Shenlong Wang,
Shrinidhi Kowshika Lakshmikanth, and Raquel Urtasun. Deep multi-sensor
lane detection. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3102–3109, 2018. 3

[2] Karsten Behrendt and Ryan Soussan. Unsupervised labeled lane marker
dataset generation using maps. In Proceedings of the IEEE International
Conference on Computer Vision, 2019. 3, 3.3

[3] Shreyank N. Gowda and Chun Yuan. Colornet: Investigating the importance
of color spaces for image classification. In ACCV, 2018. 3.2

[4] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learning
lightweight lane detection cnns by self attention distillation. arXiv preprint
arXiv:1908.00821, 2019. 3

[5] Markus Kasten, Luk Schwalb, and Morten Stehr. H0-scale street platform,
June 2020. 1

[6] Markus Kasten, Luk Schwalb, and Morten Stehr. Miniaturautonomie im
H0-Maßstab, 2020. 1

[7] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation, 2014. 3

[8] A. Meyer, N. O. Salscheider, P. F. Orzechowski, and C. Stiller. Deep seman-
tic lane segmentation for mapless driving. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 869–875, 2018.
3

[9] Zequn Qin, Huanyu Wang, and Xiao jie Li. Ultra fast structure-aware deep
lane detection. ArXiv, abs/2004.11757, 2020. 6

[10] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation. IEEE
Transactions on Intelligent Transportation Systems, 19(1):263–272, 2018.
3.1

[11] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data aug-
mentation for deep learning. Journal of Big Data, 6(1):60, Jul 2019. 3.3

[12] Lucas Tabelini Torres, Rodrigo Ferreira Berriel, Thiago M. Paixão, Claudine
Badue, Alberto Ferreira de Souza, and Thiago Oliveira-Santos. Polylanenet:
Lane estimation via deep polynomial regression. ArXiv, abs/2004.10924,
2020. 3, 6

[13] Tsung-Ying Sun, Shang-Jeng Tsai, and V. Chan. Hsi color model based
lane-marking detection. In 2006 IEEE Intelligent Transportation Systems
Conference, pages 1168–1172, 2006. 2

[14] Yue Wang, Dinggang Shen, and Eam Khwang Teoh. Lane detection using
spline model. Pattern Recogn. Lett., 21(9):677–689, July 2000. 2

[15] Ping Luo Xiaogang Wang Xingang Pan, Jianping Shi and Xiaoou Tang.
Spatial as deep: Spatial cnn for traffic scene understanding. In AAAI Con-
ference on Artificial Intelligence (AAAI), February 2018. 3, 3.3


	Lane detection in miniature environments using image segmentation

