
Hamburg University of Applied Sciences

5th semester project

MS NHAWIGATORA

Burau, Henri
henri.burau@haw-hamburg.de

Mang, Maximilian
maximilian.mang@haw-hamburg.de

Naumann, Felix
felix.naumann@haw-hamburg.de

Schnirpel, Thorben
thorben.schnirpel@haw-hamburg.de

Stark, Franek
franek.stark@haw-hamburg.de

supervised by
Prof. Dr. Tim Tiedemann
Prof. Dr. Stephan Pareigis

April 1, 2019

Abstract

The main target of this project, was to build a autonomous boat which can navigate through
a simultaneously created map or a given one. The development of this boat was made pos-
sible through a cooperation with the Miniatur Wunderland Hamburg. A Framework used
entirely throughout our project is the Robot Operating System (ROS). It offers Support
for all sensors and actors used in this project and enables a easy method for remote logging
and distributed processing. We created a modular, scalable and functional base for a com-
pletely autonomous ship.

Contents

1 Introduction 3

2 Sensors & Actors 4
2.1 Sensors . 5

2.1.1 Lidar . 5
2.1.2 Short Distance Sensors . 5
2.1.3 Camera . 5
2.1.4 Internal Measurement Unit . 6

2.2 Actors . 7
2.2.1 The PWM Controller . 7

3 Ship Platform 8
3.1 Ship Architecture . 8

3.1.1 Hull . 8
3.1.2 Intermediate Decks . 8
3.1.3 3D Prints . 9

3.2 Electrical Components . 9
3.2.1 The Motor Driver . 9
3.2.2 The Power wiring . 10

4 Robot Operating System 12
4.1 About ROS . 12
4.2 Installation . 12
4.3 ROS Tools . 13

4.3.1 Recording . 13
4.3.2 Distributed Processing . 13

4.4 Node-Graph . 14
4.4.1 Rangefinder-Node . 15
4.4.2 Lidar-Node . 15
4.4.3 IMU-Node . 16
4.4.4 PylonCamera-Node . 16
4.4.5 Controller-Node . 16

1

4.4.6 CollisionWarning-Node . 17
4.4.7 Marker-Node . 19
4.4.8 MotorController-Node . 19

4.5 Launch Configurations . 20

5 Controlling 21
5.1 Xbox-Controller . 21

5.1.1 Driver . 21
5.1.2 Bluetooth Pairing and Connecting 21
5.1.3 Ros-Usage . 22
5.1.4 Use the joy node . 22

6 Visualisation 23
6.1 TF-Frames . 23

7 Navigation 25
7.1 Hector Slam . 25

7.1.1 Tests at the University . 25
7.1.2 At the Miniaturwunderland Hamburg 26

7.2 AMCL . 26

8 Future Outlook 28

9 Images 29

2

joy_node

Chapter 1

Introduction

The project is part of our study in technical computer science at the University of Applied
Sciences in Hamburg. As part of our fifth semester project, our plan was to create an au-
tonomous vehicle for the Miniatur Wunderland in Hamburg. Since our team thought that
building an autonomous ship would be very interesting and challenging we agreed on facing
this challenge.

First of all we started looking for a framework, which would support everything we planned
on doing. Soon we stumbled upon the Robot Operating System, which is a very powerful
framework that supported distributed progressing, visualization of our data, SLAM and
many other features that were required for autonomy.

3

Chapter 2

Sensors & Actors

Figure 2.1: Hardware setup

The diagram in figure 2.1 shows the control system. The control system is powered by
an active USB Hub. The power bank has two USB ports. The first is connected to the
Raspberry Pi and the other is the power source of the active USB hub. The upstream port
of the USB hub is connected to the Raspberry Pi. The downstream ports are connected to
the LIDAR and the camera. One downstream port is used to power the PCA9685.

4

2.1 Sensors

2.1.1 Lidar

As the main component to sense our environment we chose the 2D lidar (light detection and
ranging) device URG-04LX-UG01 from Hokuyo. It scans its surroundings with 10 Hz and
a resolution of 0.36 degrees with a total scan angle of 240 degrees. Its maximum distance
is up to 4 meters (also depending on object sizes).

Mapping Currently we are able to generate maps with the lidar as a sensor alone. Nor-
mally this would not be possible without proper odometry. But we faked it by using a ros
node which takes lidar scan data to generate crude odometry.

Power Consumption Since the lidar is powered by 5V USB supply voltage it could be
powered directly plugged in to the raspberry pi. But because of its power consumtion of up
to 800mA this will lead to power consumption dips resulting in reduced availability of the
raspberry pi. We solved this problem by using a powered USB-Hub.

Figure 2.2: URG-04LX-UG01 Lidar

2.1.2 Short Distance Sensors

In order to get the distance to objects which are not covered by the lidar, we chose
GP2Y0E03 infrared distance sensors. Those sensors can measure ranges between 4 to 50
centimeters with an maximum angle of 5 Degrees. Currently we have six sensors installed,
two on each sides and one to the front and the back. Although we installed the sensors only
to assist the lidar the idea came up that we might be able to replace the lidar by put more
sensors on board. This way they we could have enough distances to locate the boat in a
future map.

2.1.3 Camera

The camera we chose and which was kindly sponsored by Basler, is a daA1920-30uc. It
offers a full-HD resolution while delivering 30 frames per second. We decided to use the color

5

Figure 2.3: GP2Y0E03 Infrared distance sensor

version of this camera in order to detect potentially colored landmarks in the surrounding
terrain. It is connected to our system via USB. To get as much terrain as possible onto
the sensor we chose a wide angled lens. It as an opening angle of 98 degrees. By using the
official Basler driver provided at the Basler website1. On the ROS side, you can simply use
the pylon camera package found on the ROS website2

Figure 2.4: Camera and objective

2.1.4 Internal Measurement Unit

For measuring the boats orientation we chose the MPU9255 which is a 10 degrees of free-
dom Internal Measurement Unit (IMU). It combines a gyroscope, an accelerometer and a
magnetometer.

Problems Due to its cheap build quality its capable of measuring rotations at x- and
y-Axis but only very inaccurate at the z-Axis. Another factor is that the magnetometer
(which is mainly responsible for the z-axis) is very close to magnetic motors which power
the boats thrusters and also the lidar. This is why the z-Axis rotation from the IMU is

1www.baslerweb.com
2http://wiki.ros.org/pylon camera

6

www.baslerweb.com
http://wiki.ros.org/pylon_camera

currently unusable. A solution could be to move the IMU further away from magnetic parts
or filter and calibrate it better on the software side.

2.2 Actors

2.2.1 The PWM Controller

The PCA9685 is a 16-channel PWM controller. It is used to control the Motor Driver and
the Servo. The Board is connected to the Raspberry via an I2C-bus. Have a look at the
Reference3 on how to change the I2C-Address.

Motor Drivers

The data sheet provides the following information:

PWM − Period = 20ms(Could vary)

Highlevels:

FullForward = 1, 1ms

(Stop)Neutral = 1, 5ms

FullReverse = 1, 8ms

Highlevels between above values will result in nuances between Full and Stop.

Servo

For the Servo we can used the standard PWM-Values as shown in figure 2.5.

Figure 2.5: Tiempos servo

3https://cdn-learn.adafruit.com/downloads/pdf/16-channel-pwm-servo-driver.pdf

7

https://cdn-learn.adafruit.com/downloads/pdf/16-channel-pwm-servo-driver.pdf

Chapter 3

Ship Platform

3.1 Ship Architecture

Figure 3.1: Ship architecture

3.1.1 Hull

The hull of the ship was created by Steinhagen Modelltechnik in Kiel. It is made of fiber-
glass, which makes it very stable. The dimensions are 98 centimeters in length, 13.7 cm in
width and 12 cm in height. To match our requirements in the Miniatur Wunderland the
ship is scaled 1:100 which is close to the ideal 1:87.

3.1.2 Intermediate Decks

The ship has two intermediate decks in order to create a modular design, which can be
disassembled quickly. These where created from a plastic material with a metal core. It is
specially designed to leave about 0.5 cm room to the sides of the hull, to potentially allow
cables to be mounted there. They intermediate decks are mounted to 90 degree brackets,
which are glued to the hull.

8

Figure 3.2: 3D printed sensor mounts

3.1.3 3D Prints

To mount actors and sensors to the ship we occasionally had to 3D-printed mounts. This
was the case for the short distance sharp sensors, the Basler camera and the servo mount.
All models were designed using Fusion360.

3.2 Electrical Components

The main computing unit of this project is a Raspberry Pi, which is a low cost mini
computer. To control the motors for the thruster and the propeller we have used a PCA9685
PWM Controller. It offers 16 PWM channels which can all be interfaced via I2C directly
from the Raspberry Pi.

3.2.1 The Motor Driver

We have used a ”Graupner Navy V15R”. It is a special motor driver for wet environment.
The load capacity is 15 A and the weight is 48g. The controllers are powered with 12V.
They get their control signals via PWM.

9

3.2.2 The Power wiring

Red wires are used for VCC connection and black wires are used for ground. We have
two separate power systems. The engine power system is 6V based and is powered by two
parallel 6V battery’s.

Figure 3.3: Power wiring

Figure 3.3 shows the power electronics. The boat has two brushed motors installed
which we use to drive the propeller and the thruster.

Battery pack

We have used two 6V Lead–acid battery. The Type is ”Sonnenschein A506/3,5 S”. The
battery’s are parallel connected. The capacitance is 3,5 Ah. Both weigh 1400 grams. They
are located in the lowest deck to put the center of mass as as deep as possible.

10

Connector typ 1

The T-connector is used for the 6V system to connect the battery’s to the System.

Figure 3.4: 6V Connector (Typ 1)

Connector typ 2

For our 12V System we have used Tamiya connectors.

Figure 3.5: 12V Connector (Typ 2)

11

Chapter 4

Robot Operating System

4.1 About ROS

As a middleware we chose the Robot Operating System (ROS) . ROS contains many very
powerfull tools, a messaging concept and a Python or C++ API. To learn more about ROS
heave a look at the ROS-Website1. In the following we assume basic knowledge about ROS
and explain only project-specific or difficult things.

4.2 Installation

To install ROS in a simple and maintainable way there are a few things that you have to
take into consideration.

First of all we tried to install ROS onto the default linux distribution for the Raspberry
Pi Raspbian. The problem here was that we could only compile ROS from scratch and
had to solve the dependencies our selfs (Have a look at the ros installation page2). This
caused a first installation expense of at least 8 hours. Another problem is, that whenever
you add changed nodes to your catkin workspace, you have to recompile the entire project
which takes about one minute each time. Since we got tired of this process pretty fast, we
searched for alternatives to this installation process.

We discovered that we could use another linux distribution called Ubuntu Mate. This
distro made it possible to install a precompiled ROS-Version and resolve the dependencies
almost completely automatically. See the ROS Documentation3 for instructions. With this
installation workflow we could finally save a lot of time in our development process.

1http://www.ros.org
2http://wiki.ros.org/melodic/Installation/Source
3http://wiki.ros.org/melodic/Installation/Ubuntu

12

http://www.ros.org
http://wiki.ros.org/melodic/Installation/Source
http://wiki.ros.org/melodic/Installation/Ubuntu

4.3 ROS Tools

ROS provides a large set of tools which save developers a lot of time developing, testing
and simulating nodes. In this section we want to present a selection of those tools which
helped us most.

4.3.1 Recording

To record and play messages ROS provides a tool called rosbag. This tool allows the user
to record selected messages which are being published to the ROS-Master in so called Bags
and play them back later for debugging, testing and simulating purposes. Although it can
also be used for logging it is not its main purpose. It is also possible to rebag Bags which
means to form a new Bag out of selected messagetopics from another Bag.

4.3.2 Distributed Processing

With ROS more than one system can cooperate together and act as a distributed system.
As known, ROS consists of the ROS-Master and several ROS-Nodes. In a distributed
ROS-System one Computer is the Master and the other one is called Slave.

Preconditions To set up the distributed system the following preconditions must be
fulfilled:

• The computers involved must be in the same network.

• Each computer has a hostname. (Mostly you get this in Linux by the keyword
hostname.)

• The computers can ping each other by hostname. (It might be necessary to add the
hostnames and IP-addresses in the local /etc/hosts.)

ROS-Setup Setting up ROS for distributed usage

• On all computers exists an environment variable which holds the URI to master and
is called ROS MASTER URI: Use following console command:

export ROS_MASTER_URI=http://<HOSTNAME >:<PORT >

Replace <HOSTNAME> with the hostname of the master-computer. Replace <PORT>

with the ROS-Port. Standard is 11311.

• Moreover the ros-nodes on each computer have to know their own hostname. Use
following command to set the environment variable:

13

export ROS_HOSTNAME=<HOSTNAME >

Replace <HOSTNAME> with the hostname of the respective slave-computer.

Remember that for each console-window the environment variables have
to be set individually.

4.4 Node-Graph

Figure 4.1: Node graph of the latest setup

Node Topic Message type

rangefinder P: rangfinder/ sensor msg/Range

imu P: imu/ sensor msg/Imu

pylon camera P: pylon camera node/image raw/ sensor msg/Image

marker P: marker/ visualization msgs/Marker

motor controller
S: motor controller/<set propeller/

set rudder/set thruster>
titanic/MotorThrottle

titanic/ServoRad

lidar P: laser/ sensor msg/LaserScan

Table 4.1: All nodes with they’re topics and messages types. P means publishes topic and
S means subscribes to topic.

14

The Node-Graph can be structured in actuators, logic and sensors as shown in figure 4.1.
Actuator-nodes are responsible for the movement of the ship. Only the MotorController-
Node is in this section so far, it controls the bow thruster and the propeller motor. Nodes
on the sensor layer sense the environment and nodes on the logic layer compute on data
coming from the sensor layer. All nodes (with they’re topics and message types) are listed
in table 4.4.

4.4.1 Rangefinder-Node

The Rangefinder node is a wrapper for the Sharp GP2Y0E03 distance sensor as described
in subsection 2.1.2. It reads data from a sensor connected via I2C and converts them into a
distance. The distance is then published over a configurable Topic (default: /rangefinder)
as a Range4 message with a configurable frequency (default: 10Hz). The address is also
configured using parameters. An example launchfile entry would be:

<node pkg=" titanic" type=" rangefinder_node">

<param name=" address" value="$(eval 0x40)"/>

<param name=" topic" value=" rangefinder/heck_steuerbord "/>

</node >

4.4.2 Lidar-Node

For the integration of the hokuyo-lidar as described in subsection 2.1.1 we used the urg node5

provided from ros itself. It is designed to work with any SCIP 2.2 or earlier compliant laser
range-finders.

As visible in the launch-file, we are starting the node with the following parameters:

<node name=" lidar_node" pkg=" urg_node" type=" urg_node">

...

<param name=" publish_intensity" value=" false"/>

<param name=" publish_multiecho" value=" false"/>

<param name=" angle_min" value =" -2.2689"/ >

<param name=" angle_max" value ="2.2689"/ >

</node >

The insensity-mode is deactivated here. Therefore we only receive distance values and
no brightness values. We also set a higher scan axis. As recommended in the ROS-
Documentation the node publishes under the topic scan and the frame laser.

4http://docs.ros.org/melodic/api/sensor msgs/html/msg/Range.html
5http://wiki.ros.org/urg node

15

http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Range.html
http://wiki.ros.org/urg_node

4.4.3 IMU-Node

This node was developed to publish the values from the MPU9255 as described in subsec-
tion 2.1.4. The IMU data is published over the /imu-Topic using the IMU6 message with
a frequency of around 100Hz.

Usability The Node as it is cannot be used right now. Due to the bad build quality of
the used sensor only rotations around the x- and y-Axis can be measured reliable. To be
functional the IMU data needs filtering which is not yet implemented.

4.4.4 PylonCamera-Node

This Node is responsible for the camera as described in subsection 2.1.3. We used an existing
node which utilizes the Basler Pylon software suilt. For configuration details refer to the
ros wiki7.

4.4.5 Controller-Node

The Controller-Node communicates with the joy-Node which utilizes bluetooth to connect
to a X-Box One controller. The controller events, which are present in the Topic joy and
are published by the joy node, have to be send to the motor controller via the Motor
Controller Node. This requires another node in between in order to translate the events
and is called controller node.

Subscriptions As described earlier, the node has to subscribe to the Topic joy and has
the message type Joy8. The values of the buttons and axis are sent in two arrays and for
our use case can be selected and read with:

rightTrigger = data.axes [5]

leftTrigger = data.axes [2]

leftSteer = data.axes [0]

rightSteer = data.axes [3]

Topics This data can simply be calculated into our motor control data and published via
the motor control Topics:

• /motor controller node/set propeller To control the propller of the ship, we used
the right and left trigger of the controller. As known from many video games, the
right trigger is used for acceleration and the left trigger for breaking/reverse thrust.
The control value for the motor controller is therefor calculated from the two trigger
values:

6http://docs.ros.org/melodic/api/sensor msgs/html/msg/Imu.html
7http://wiki.ros.org/pylon camera
8http://docs.ros.org/melodic/api/sensor msgs/html/msg/Joy.html

16

joy_node
controller_node
/motor_controller_node/set_propeller
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Imu.html
http://wiki.ros.org/pylon_camera
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Joy.html

propeller = ((- rightTrigger + 1) / 2) - ((- leftTrigger + 1)/2)

This data is published using the custom message type titanic::MotorThrottle via
the named topic.

propellerMsg = MotorThrottle ()

//...

propellerMsg.percent = propeller

//...

pubPropeler.publish(propellerMsg)

This Messagetype holds control commands in a percentage percent.

• motor controller node/set thruster Since the joy-Axes-Array holds values as per-
centages no value conversion has to be made:

thruster = leftSteer

//...

thrusterMsg.percent = thruster

We are also uing the custom message type: titanic::MotorThrottle here.

• /motor controller node/set servo For the rudder we are using a control value
range of (+ − 100%) which must be mapped into the control command range of
(+− 0.785398RAD).

servo = rightSteer * 0.785398 # To Rad

This topic publishes the custom message type titianic::ServoRad, which sends the
deflection of the rudder as a radiant in a float. At this point the value range must be
adapted if the rudder relents too much! During first tests we stumbled upon a problem,
in which the steering rod dropped off the rudder connector.

4.4.6 CollisionWarning-Node

As a first assistance system, a distance sensor based warning was introduced. Whenever
the ship got too close to an obstacle (which could be detected by the sharp sensors) the
Controller begins to rumble. This was made possible through the force feedback of the
controller.

Subscribed Topics To realize the behaviour mentioned above, the Node has to subscribe
to all sharp distance sensors and saves their distance values in a map.

distancesPrct = {" rangefinder/heck" : 0,

"rangefinder/heck_steuerbord" : 0,

"rangefinder/bug_steuerbord" : 0,

"rangefinder/heck_backbord" : 0,

17

titanic::MotorThrottle
motor_controller_node/set_thruster
titanic::MotorThrottle
/motor_controller_node/set_servo
titianic::ServoRad

"rangefinder/bug_backbord" : 0,

"rangefinder/bug" : 0}

The map is also used for extracting the names of the topics the node has to subscribe to:

for sensorNodeName in distancesPrct.keys ():

distancesPrct[sensorNodeName] = 0

rospy.Subscriber(sensorNodeName , Range , handle_dsens , sensorNodeName)

The callback function used here is called handle dsens. Its last parameter sensorNode-
Name tells the event handler the name of the triggering topic. This functionality is not
explained properly in the ROS-Documentation. We adopted the usage from the example
code included with ROS.
Before the measured distances are put into the map they have to be converted into percent-
ages:

THRESHOLD = 0.10 #Threshold [m] between min_range and actual range

dif = data.range - data.min_range

procentNear = (dif / THRESHOLD) #Percentage of Range between MINRange and Threashold (0% = touch)

This percentage represents the range from the shortest distance measurable to a user defined
threshold.

Topic To activate the corresponding vibration intensity on the controller, all values (of
the map) are compared periodically and the largest percentage is published to the topic
/joy/set feedback
The topic has the message type sensor msgs::JoyFeedbackArray, which constists of an
array of sensor msgs::JoyFeedback.
This message type is defined as follows:

Declare of the type of feedback

uint8 TYPE_LED = 0

uint8 TYPE_RUMBLE = 1

uint8 TYPE_BUZZER = 2

uint8 type

This will hold an id number for each type of each feedback.

Example , the first led would be id=0, the second would be id=1

uint8 id

Intensity of the feedback , from 0.0 to 1.0, inclusive. If device is

actually binary , driver should treat 0<=x<0.5 as off , 0.5<=x<=1 as on.

float32 intensity

18

/joy/set_feedback
sensor_msgs::JoyFeedbackArray
sensor_msgs::JoyFeedback

The X-Box controller we used has multiple motors for vibration. It has one in each trigger
and two more in the center of the controller. Currently it is only possibe to control the
motors in the center of the controller. The node joy node is used here. Therefore:

type = TYPE_RUMBLE

must be used for the vibration.

id = 0

For the larger motor

id = 1

For the smaller motor which results in a softer vibration.

With help of the JoyFeedbackArray it is possible to control both motors at the same
time.
For this node we are currently only using the larger motor:

msgFArray = JoyFeedbackArray ()

msgF = JoyFeedback ()

msgF.type = TYPE_RUMBLE

msgF.id = RUMBLE_STRONG_MOTOR

msgF.intensity = procentNear

msgFArray.array = [msgF]

publisher.publish(msgFArray)

Where procentNear is the top threshold mentioned above in the distance sensor mapping.

4.4.7 Marker-Node

The Marker-Node publishes a representation of the ship on the /marker-Topic via the
Marker9 message. The frequency is parametrized (default: 10Hz) and could be adjusted
as follows:

<node pkg=" titanic" type=" marker_node">

<param name=" frequency" value ="10"/ >

</node >

4.4.8 MotorController-Node

This Node controls the thruster, propeller and rudder motors. The motor controller
node subscribes following Messages:

9http://docs.ros.org/melodic/api/visualization msgs/html/msg/Marker.html

19

joy_node
JoyFeedbackArray
motor_controller_node
motor_controller_node
http://docs.ros.org/melodic/api/visualization_msgs/html/msg/Marker.html

/motor controller node/set propeller It has the userdefinied messagtype titanic::MotorThrottle,
which contains a thrustvalue as a percentage. Negativ values will result in a reverse thrust.
The topic sets the Speed of the propeller.

/motor controller node/set thruster The same as above for the bow thruster.

/motor controller node/set servo Message type is user defined titanic::ServoRad
which contains the steering angel in radians. (−45 deg to45 deg).

It simply maps the Messages to the right pwm-values using calculations.

4.5 Launch Configurations

ROS provides an easy way to start multiple nodes at once called roslaunch. This program
takes as argument a so called launchfile where the nodes are specified.
In order to be flexible we created multiple launchfiles with different responsibilities, for
example one launchfile for the sensor nodes. Then we combined those specific launchfiles
in different setups, for example one for the nodes we want to start on the ship and one for
the nodes we want to start on a remote laptop.
The launchfiles are located in the launch directory in the project root. The distribution of
the launchfiles is shown in figure 4.2.

Figure 4.2: Distribution of the launchfiles

20

/motor_controller_node/set_propeller
/motor_controller_node/set_thruster
/motor_controller_node/set_servo
titanic::ServoRad

Chapter 5

Controlling

5.1 Xbox-Controller

For manual steering purpose, we decided us to use the X-Box Wireless Controller. It is
connected via bluetooth and also has different kinds of force-feedback motors. Which offers
some nice opportunities for assistance systems.

5.1.1 Driver

We used a third-Party Controller driver, which is especially designed for this Type of Con-
troller 1.

5.1.2 Bluetooth Pairing and Connecting

This is a really complicated thing. This is my recommended workflow:

1. This first step you have to do on each reboot! (Sometimes it works without these lines
of code)

sudo su

echo 1 > /sys/module/bluetooth/parameters/disable_ertm

service bluetooth restart

exit

2. The First Connection:
Use the tool bluetoothctl, there are very nice manuals in Internet. Pair the Controller
with the tool ’bluetoothctl’. Don’t worry, if the Controller seems to connect and dis-
connect periodically. Then connect the Controller with the tool bluetoothctl. Restart
the Controller by pushing the X-BOX-Button more than 5 Seconds. Then turn on
again.

1https://github.com/atar-axis/xpadneo

21

https://github.com/atar-axis/xpadneo

Once the Controller is paired you only have to do Step 1 on each reboot. After that turn on
the Controller and it will connect automatically.

5.1.3 Ros-Usage

In ROS you can use the joy package2. It contains the joy node. Moreover it needs the
following dependencies:

sudo apt -get install libspnav -dev

sudo apt -get install libbluetooth -dev

sudo apt -get install libcwiid -dev

5.1.4 Use the joy node

For the correct feedback it is important to configure the device correct:

rosparam set joy_node/dev "/dev/input/<joystick >"

rosparam set joy_node/dev_ff "/dev/input/<joystickFF >"

rosparam set joy_node/autorepeat_rate <rate >

The First line sets the joystick input device. It is often js0.
The second line sets the joystick output device for force-feedback. It is often event0 or
event1. If one parameter is wrongly configured ROS will warn you with an Error.
The last line is the refresh rate. Its not well documented what it really does, but it seems
to be important for force-feedback attack-rate. We get the best results with 50 Hz.

2http://wiki.ros.org/joy/

22

joy_node
joy_node
http://wiki.ros.org/joy/

Chapter 6

Visualisation

6.1 TF-Frames

In order to process and visualize the data correctly, we are using the ROS concept TF-
Frames. Our TF-Graph looks as shown in figure 6.1.

Figure 6.1: TF-Graph

This frame constellation is also recommended by ROS:

map This frame holds the map in which our ship is located.

odom This frame contains the odometry data. Usually this frame is used for the trans-
formation with the base footprint and odometry. But because our ship has no fully
functional odometry we did not properly use this frame. Since some parts of the ROS-
Navigation-Stack require the presence of the named frame, we either had to leave it
empty or do the transformation statically. Later we will explain further how the odometry
data can be faked. Nodes from the Navigation Stack then transform a map to odom while
taking the transformation from odom to base footprint into consideration.

23

base_footprint
map
odom
odom
base_footprint

base footprint This frame is referring to the ship, without taking any horizontal or
vertical tilting into consideration. It basically refers to a 2D shadow of the ship.

base link This frame is referring to the ship, while taking any horizontal or vertical tilt-
ing into consideration. The tranformation it and the base footprint should happen via
the IMU-Data. In the frame base link also the individual sensor will be transformed.

The transformations used here are generated by the Tf2-Lib :

laser link static boradcaster this static broadcaster is transforming between base
link and laser link.

dsensor link static boradcaster 〈Position〉 This static Tf2-Broadcaster is transform-
ing between the corresponding dsensor/〈Position〉 and base link.

imu link static boradcaster This one is transforming imu and base link.

maker node This Node is broadcasting the marker (shipmodel) onto the base link.

24

base_footprint
base_link
laser_link_static_boradcaster
base_link
base_link
laser_link
dsensor_link_static_boradcaster_<Position>
dsensor/<Position>
base_link
imu_link_static_boradcaster
base_link
maker_node
base_link

Chapter 7

Navigation

7.1 Hector Slam

At first we tried to generate a map of the environment just by using the lidar-data. ROS
offers predefined nodes for this job in its Navigation Stack. Unfortunately these require
a working odometry which we did not have, as mentioned above.
But then we stumbled upon the package hector slam created by the TU Darmstadt.
This node has the following advantages:

1. Fast

2. Low Cost

3. Robust Scanmatching

4. 6DOF suitable

5. Odometry not needed

6. Hard Realtime

The first two advantages are very important due to our very low processing speed on the
ship. Since the system is 6DOF suitable it allows our ship to tilt along with waves with-
out influencing the map creation. The fifth point is strongly required, because we have no
working odometry.

7.1.1 Tests at the University

At first we tested the map creation at our Univesity. Since we already reported problems
with our IMU at that time, the lack of tilt (no waves in our test laboratory) was an advan-
tage here.

25

hector_slam

Figure 7.1: The first map we created. We placed a few obstacles into our hallway and
dragged the ship along it.

As figure 7.1 shows, we achieved pretty good results here. All the obstacles were detected
by our sensors and correctly placed into a pretty precise map of the ships environment.
Only some problems were detected when parts of the hallway looked identical for the ship.
But since the terrain at the Miniaturwunderland Hamburg is extremely detailed, we would
probably not stumble upon this problem there.

7.1.2 At the Miniaturwunderland Hamburg

At the Miniaturwunderland the problem with the tilt caused by the waves became part
of the tests. The navigation system was supposed to correct this problem using the IMU-
values, but since we had problems with it (mentioned above), we completely deactivated it.
The pilot in command tried to keep the ship as steady as possible, but still a slight tilting
is visible in the collected data. This can be recognized by duplicate lines in the map plot.
Another problem we detected, was that the border of the pool was not high enough. This
caused the lidar to look through a class pane above the actual pool border. The navigation
system then tried to include people passing by into the map creation. Also moving obstacles
on the water (other ships) were included in the map creation and could only be removed
by passing the are multiple times after the obstacles were gone. A generated map is shown
in figure 7.2.

7.2 AMCL

”amcl is a probabilistic localization system for a robot moving in 2D. It imple-
ments the adaptive (or KLD-sampling) Monte Carlo localization approach (as
described by Dieter Fox), which uses a particle filter to track the pose of a robot

26

against a known map.” (Package summary - amcl node1)

The maps generated from our hector slam node together with our laserscan data got fed
into the amcl node and we where able to navigate inside the given map. We did those tests
not in the live usage but generated the maps offline with recorded rosbags and tried the amcl
node offline on this data. We got a problem when using amcl because it needs odometry
data which we don’t have because of our bad quality IMU. As a solution we generated an
estimation of the 2D odometry using the rf2o node2. With that kind of hacked workaround
we were able to estimate our correct position and orientation multiple times but the system
is far from reliable. That might be because all information for the calculation come from
the laser scan. In the future we will use a calibrated IMU and expect far better results.

Figure 7.2: Generated at the Miniatur-Wunderland

1http://wiki.ros.org/amcl
2http://wiki.ros.org/rf2o

27

http://wiki.ros.org/amcl
http://wiki.ros.org/rf2o

Chapter 8

Future Outlook

This project offers many opportunities to continue. Of course the biggest goal will be to
make the ship fully autonomous. Our setup showed, that our sensors are capable of tracking
the ship correctly. Therefor only software changes have to be made and an algorithm for
complete autonomy has to be implemented.

Also something we learned from our tests was, that the Raspberry Pi 3B+ used as the
”brain” of our ship is not as powerful as our use case requires. In particular when we had to
log a lot of data onto the SD-card, we noticed significant performance drops, which caused
the remote control to be extremely in-reactive. Although we could fix this issue through
optimizing our log processes, it would probably be advisable to use a more powerful pro-
cessing board in the future. Maybe something like the ODroid H2 would be better, because
it offers a stronger cpu and has a faster harddrive interface. Also USB 3.0 support makes
throughput via usb much faster.

Currently all our nodes (except one) have been written in Python, which is an inter-
preted programming language. Because it is interpreted and does not directly generate
cpu instructions, we lose a little bit of performance, which in our case has to be taken into
consideration. Therefor we are planning to rewrite the project into C++ Code, which will
give us a noticeable performance boost.

28

Chapter 9

Images

Figure 9.1: The first watering of the ship. Fortunately only a small amount of trimming
was needed to keep it stable.

29

Figure 9.2: The first visit at the Miniaturwunderland Hamburg with our ship.

30

Figure 9.3: Although the ship was still controlled via our X-Box controller, the data we
collected was very useful.

31

Figure 9.4: Collecting data of the extremely detailed terrain.

32

Figure 9.5: While collecting data, multiple laptops were used to monitor them in realtime
and control the launchfiles.

33

Figure 9.6: While driving around the area, we got a live evaluation of the collected data
and received dierct feedback on how good our system could collect the information about
its location and surrounding.

34

Figure 9.7: All in all the project was a great success and the team is looking forward to
future cooperations with the Miniaturwunderland Hamburg and making the ship completely
autonomous in the future.

35

	Introduction
	Sensors & Actors
	Sensors
	Lidar
	Short Distance Sensors
	Camera
	Internal Measurement Unit

	Actors
	The PWM Controller

	Ship Platform
	Ship Architecture
	Hull
	Intermediate Decks
	3D Prints

	Electrical Components
	The Motor Driver
	The Power wiring

	Robot Operating System
	About ROS
	Installation
	ROS Tools
	Recording
	Distributed Processing

	Node-Graph
	Rangefinder-Node
	Lidar-Node
	IMU-Node
	PylonCamera-Node
	Controller-Node
	CollisionWarning-Node
	Marker-Node
	MotorController-Node

	Launch Configurations

	Controlling
	Xbox-Controller
	Driver
	Bluetooth Pairing and Connecting
	Ros-Usage

