Robuste Türerkennung mit Deep Learning in der bildbasierten Roboternavigation

Abstract

Um die Robustheit der Erkennung von Türen durch neuronale Netzwerke zu verbessern, werden Bilddatensätze augmentiert. Das Verändern der Helligkeit, der Farbe, des Kontrastes und dem Löschen von Bildausschnitten, sowie das Nutzen eines Greenscreens sind die Image Data Augmentation Methoden, die vorgestellt werden. Im Ergebnis zeigt sich, dass das Verändern des Kontrastes gefolgt von dem Löschen von Bildausschnitten die Methoden mit den höchsten Ergebnissen sind. Das neuronale Netz, welches eine Kombination aller verwendeten Methoden als Trainingsdatensatz erhielt, konnte die höchsten Erkennungsraten unter unterschiedlichen Umgebungsbedingungen erzielen.