Tim Tiedemann is a professor of intelligent sensors in computer science department of HAW Hamburg (University of Applied Sciences Hamburg).
Furhter Interests
- FPGA-basierte Implementierung von Algorithmen
- Anwendung maschineller Lernverfahren (ML) allgemein, Deep-Learning speziell
- Data Mining mit ML-Methoden
Betreute Bachelor-, Master- und Diplomarbeitsthemen
- Deep Learning for Time Series Classification and Prediction on Big Crowd Sensed Automotive Data (Master-Arbeit, extern)
- Bachelor-Arbeit zu FPGA-basierter Implementierung spezifischer Algorithmen (Industrie-Kooperation)
- Bachelor-Arbeit zu datengetriebener Sensordatenfusion
- Master-Arbeit/Master-Projekte im Bereich Kooperation im autonomen Fahren
Weitere Interessen
- FPGA-basierte Implementierung von Algorithmen
- Anwendung maschineller Lernverfahren (ML) allgemein, Deep-Learning speziell
- Data Mining mit ML-Methoden
Ämter und Gremien
- Mitglied im Hochschulsenat
Lehrgebiete, Lehrfächer
- Algorithmen und Datenstrukturen
- Betriebssysteme
- Rechnerstrukturen und Maschinennahes Programmieren
- Intelligente Sensorik (iSen)
- Intelligente Sensorsysteme (in Vorbereitung)
- Master-Grundseminar, Master-Hauptseminar
- Bachelor-Seminar
- Projekte: Lehr-CPU-/Lehr-BS-Entwicklung, Deep Learning, Autonome Systeme
Publikationen
[Publikationsliste (vor 2016) noch im Aufbau]
2018:
- Tiedemann, T. (2018): Communication Hardware, in: Bosse, S., Lehmhus, D., Lang, W. and Busse, M. (2018) Material-Integrated Intelligent Systems - Technology and Applications: Technology and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527679249.ch15
2017:
- Schenck, Horst, Tiedemann, Gaulik, Möller (2017): Comparing parallel hardware architectures for visually guided robot navigation. Concurrency Computat.: Pract. Exper., 29: pe3833, doi: 10.1002/cpe.3833
- Tiedemann, Bauer, Kirchner: Concept of Cognitively Inspired Automotive Sensor Data Fusion. Talk at IEEE Intelligent Vehicles 2017, WS on Cognitively Inspired Vehicles.
- Tiedemann, Backe, Vögele, Conradi: Automotive Ad Hoc Sensor Networks in the Project SADA: Concept and Current State. Poster presentation at the “Fachgespräche Sensornetze 2017”.
- Tiedemann: Dynamic and Automatic Sensor Data Fusion in the Automotive Research Project SADA. Talk at the Int. Conf “Vehicle Intelligence”, Dec. 2017, Munich.
2016:
- Tim Tiedemann, Christian Backe, Thomas Vögele, Peter Conradi (2016): An Automotive Distributed Mobile Sensor Data Collection with Machine Learning Based Data Fusion and Analysis on a Central Backend System. Procedia Technology, Volume 26, 2016, Pages 570-579, ISSN 2212-0173, dx.doi.org/10.1016/j.protcy.2016.08.071.
- Wendelin Feiten, Susana Alcalde Baguees, Michael Fiegert, Feihu Zhang, Dhiraj Gulati, Tim Tiedemann: A New Concept for a Cooperative Fusion Platform. Proceedings of 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.
- Susana Alcalde Bagüés, Wendelin Feiten, Tim Tiedemann, Christian Backe, Dhiraj Gulati, Steffen Lorenz and Peter Conradi: Towards Dynamic and Flexible Sensor Fusion for Automotive Applications. Proceedings of the 20th International Forum on Advanced Microsystems for Automotive Applications (AMAA 2016).
2015:
- T. Tiedemann, T. Vögele, Mario M. Krell, Jan H. Metzen, F. Kirchner: Concept
of a Data Thread Based Parking Space Occupancy Prediction in a Berlin Pilot
Region. Proceedings of the AAAI Workshop on AI for Transportation (WAIT),
2015.
- T. Köhler: Bio-Inspired Motion Detection Based on an FPGA Platform. In G.
Cristobal et al. (Herausgeber): Biologically-Inspired Computer Vision:
Fundamentals and Applications, Wiley-VCH, Weinheim, Kapitel 17, Okt/2015.
ISBN: 978-3-527-41264-8. (Buchkapitel)
- T. Tiedemann, T. Vögele: Wissen, wann ein Parkplatz frei wird. In
Internationales Verkehrswesen, DVV Media Group GmbH, volume 67, pages
84-85, 2015. (nicht peer-reviewed)
Interests
- Intelligent Sensors
- Sensor Data Processing
- Applications in Autonomous Driving
- Machine Learning Methods
- Applications of Deep Learning