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Abstract

The Reinforcement Learning algorithm Double Deep Q-Network (DDQN) is known to
have an unstable training process (Halat and Ebadzadeh, 2021). In order to overcome
instability, this paper aims to deepen the understanding of stability and measuring it.
Therefore, numerical indicators are proposed to determine convergence and experiment
stability. Additionally, the metrics are investigated for Cartpole by adapting the replay
buffer size and minibatch size. Experimental results show that the minibatch size has a
higher impact on stability. Best stabilities are achieved with the lowest minibatch size of
10. This setup leads to an up to 4.6% higher stability.

Keywords: DDQN, stability metrics, convergence stability, experiment stability, replay
buffer size, minibatch size

1. Introduction

Reinforcement Learning (RL) methods are increasingly used in various application areas,
e. g. robotics (Kober et al., 2013), games or natural language processing (Li, 2018). Nev-
ertheless, RL algorithms as Double Deep Q-Network (DDQN) have an unstable training
process which leads to forgetting. As stability is a key factor for success, this issue has
to be addressed (Halat and Ebadzadeh, 2021). Before solving the instability, it is neces-
sary to fully understand the topic in order to recognize e. g. hyperparameter dependent
instabilities. Therefore, this paper introduces numerical metrics for stability of DDQN that
support the evaluation and comparability of different experiment setups. Additionally, the
metrics will be determined and analyzed for different experimental setups to solve Cartpole
with DDQN. The experiments investigate exemplary the adaption of the hyperparameters
replay buffer size and minibatch size as Liu and Zou (2017) already showed their impact on
the learning of an agent. Moreover, Zhang and Sutton (2017) found the replay buffer size
to be an important but underestimated hyperparameter for performance.

The paper is structured as follows. Section 2 discusses related work in the context of the
goal of this paper. Section 3 then explains the basics of DDQN that are needed as foundation
for the paper and the metrics that are introduced in section 4. Here, a distinction is made
between convergence and experiment stability. Using the metrics, section 5 analyzes the
stability of different setups used to solve CartPole with DDQN. It follows a discussion of
the results and the metrics in section 6. Finally, section 7 draws a conclusion.
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2. Related Work

The reinforcement learning algorithm DDQN leads to instability in the training process of
e. g. CartPole (Halat and Ebadzadeh, 2021). Some paper address this challenge that an
agent suddenly forgets things already learned. Buşoniu et al. (2018) focus on reinforcement
learning algorithms for control and find that stability is an open research topic. The au-
thors differ between stability in terms of robustness against e. g. noise or disturbances and
in terms of convergence of the training process. For the purpose of this paper, stability in-
cludes on the one hand the convergence process and on the other hand the similarity of the
training processes between multiple runs with the same hyperparameter but different seeds
for the neural networks. The two characteristics will be referred as convergence stability
and experiment stability.

Moreover, Halat and Ebadzadeh (2021) propose some modifications in the target value
function of DDQN in order to overcome the convergence instability. Experiment stability
is investigated through averaging scores for each episode over multiple runs. As the final
convergence comparisons are based on plotting average scores, it is a visual approach. In
contrast, this paper proposes primarily numerical indicators for convergence and experiment
stability. Both can be plotted as well.

In terms of benchmarking new or modified algorithms, other papers have a similar visual
approach as mentioned above. In addition to the average return for each step Fujimoto et al.
(2019) plot the standard deviation to compare different batch deep reinforcement learning
algorithms. Kumar et al. (2019) and Anschel et al. (2017) do a similar comparison for
evaluating their approaches to reduce instability. Instead of the average, Van Hasselt et al.
(2016) and Fedus et al. (2020) analyze the median over different runs and the quantiles.

Furthermore, Explainable Reinforcement Learning (XRL) (Heuillet et al., 2020) is a
related topic as this paper aims to deepen the understanding. The idea of XRL is to make
RL algorithms more transparent and comprehensible in order to increase the understanding
and the trust of users (Heuillet et al., 2020). Wang et al. (2019) approach this by proposing
a dashboard to give insights into the processes of Deep Q-Networks (DQNs). Here, one part
is the statistics view that aims to summarize the training statistics. With information as
e. g. the average rewards per episode, the user should be able to understand stability among
others. Numerical indicators for experiments and convergence stability could improve XRL
through a better description than simply averaging the reward over multiple runs.

3. Double Deep Q-Networks

RL is a machine learning paradigm. In comparison to supervised and unsupervised learning,
agents aim to learn goal-directed actions to maximize a numerical reward signal. For this
purpose, agents explore the environment through interaction. This means that in a current
state s, an agent chooses an action aϵA(s) according to a policy π1 that results in a following
state s′. Moreover, the agent receives a reward r. In order to maximize the reward signal,
an agent has to balance exploration and exploitation. Meaning that the selection of not yet

1. A distinction is made between deterministic and stochastic policies. A deterministic policy π(s) chooses
an action based on a given state s. In comparison, a stochastic policy π(a|s) returns a probability for
an action to be taken given state s.
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taken actions (exploration) as well as actions experienced as useful in the past (exploitation)
are needed to achieve a goal (Sutton and Barto, 2018, P. 1-6).

The basic concept of DDQN is Q-Learning which is considered as an off-policy method.
Meaning that the goal is to learn a target policy π while the agent is following another
policy b called behavior policy. The policy π is typically deterministic while b has to be
stochastic (e. g. ϵ-greedy). Expected returns sampled from one policy can be estimated
for another policy by importance sampling. It weights returns according to the relative
probability (Sutton and Barto, 2018, P. 103-104).

Q-Learning enables this by learning the Q-value which represents the expected dis-
counted rewards for an agent taking action a in state s and acting optimally afterwards.
Action-values are determined by

Q(s, a)← Q(s, a) + α[R(s, a, s′) + γ ∗maxa′Q(s′, a′)−Q(s, a)] (1)

where γ is the discount factor which limits future rewards and α is the step size. With
this, the optimal action-value function q∗ can be approximated (Russell and Norvig, 2021).

DQN extends the concept of Q-Learning by the integration of deep neural networks as
a nonlinear function approximator. This expands the applicability of RL to domains where
the state spaces are high-dimensional as deep convolutional neural networks approximate the
optimal action value. Including the weights θ, the network is called a Q-network. Training
process therefore comprises the adaption of θi in iteration i. The network weights impact
the approximate target values which are determined based on the parameters θ−i from the
previous iteration:

Y DQN
t ≡ Rt+1 + γ ∗maxaQ(St+1, a; θ

−
i ) (2)

In order to increase stability of the algorithm, the trained Q-network Q is used for
multiple steps as a target network Q̂ to generate targets and is updated by Q every C steps.
Moreover, experience replay (Lin, 1992) is applied. The idea is to store all experiences of
an agent over multiple episodes in a replay memory Dt = {e1, ..., et}. At each step, an
experience is presented as et = (st, at, rt, st+1). In general, D has a fixed size and stores
the last N steps. For each time-step, Q is trained on a minibatch of the replay memory
where a minibatch consists of random samples of the stored experiences. This lead to less
correlation of the samples. As a result, DQN outperforms previous RL algorithms (Mnih
et al., 2015).

Following the approach explained above, actions are selected and evaluated by the same
DQN which leads to overestimation of action values. Therefore, Van Hasselt et al. (2016)
propose to separate between both by using different networks. The target network with the
weights θ−t is used to evaluate the current policy while action selection is performed based
on the network with weights θt. Equation 3 presents the resulting target. Similar to DQN,
the target network is updated regularly.

Y DoubleDQN
t ≡ Rt+1 + γ ∗Q(St+1, argmaxaQ(St+1, a; θi), θ

−
i ) (3)
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4. Stability Metrics

For the purpose of this paper, a distinction is made between convergence and experiment
stability. Both are explained in the following and numerical indicators are introduced.

4.1 Convergence Stability

Convergence stability refers to the learning curve over multiple episodes. The optimal
learning process has an upward trend meaning that an agent is increasing the reward signal
continuously and converging the maximum. In case the learning process is monotonically
increasing, it is considered as optimal convergence stability. Every decrease in the reward
signal contradicts the monotonicity condition and is counted as instability. To measure
the strength of instability, the ∆return of all decreases is summed up and called actual
instability iactual. It is defined in equation 4 where n is the number of episodes. The
convergence stability sconvergence is then defined as the actual instability relatively to the
maximum instability imax that can be reached in an experiment. The maximum instability
depends on the use case. E. g. for Cartpole it can be calculated supposing that reaching the
maximum return Rmax and minimum return Rmin alternate for episodes. The calculation
follows equation 5 where nepisodes is the number of episodes.

iactual =

n∑
k=2

(Rk−1 −Rk), (Rk < Rk−1) (4)

imax ≈ ⌊
nepisodes

2
⌋ ∗ (Rmax −Rmin) (5)

Based on the actual instability iactual and the maximum instability imax, the convergence
stability can be determined with

sconvergence = 1− iactual
imax

. (6)

where sconvergence ∈ [0, 1]. Here, a monotonically increasing learning curve (optimal con-
vergence stability) is reached with sconvergence = 1 whereas sconvergence = 0 represents the
minimal stability.

Figure 1 shows a learning curve exemplary for a CartPole experiment. Blue lines high-
light an upward trend that meet the monotonicity condition. In comparison to that, orange
lines are decreases in the return which represent instability. For nepisodes = 50 the maximum
instability is imax = (50/2) ∗ (200− 0) = 5000. With iactual and imax convergence stability
can be calculated. For this, all instabilities of an experiment iactual are summed up and
divided by the maximum instability imax. It can be determined as in equation 6. For the
example in figure 1 the instability is iactual = 485. Calculating the convergence stability
results in sconvergence = 0.903.

As convergence stability can differ for the same experimental setup but different seeds
for the neural network, the convergence stability can be averaged for multiple runs.

4.2 Experiment Stability

In comparison to the convergence stability, the experiment stability aims to measure the
similarity of the learning curves of multiple experiments with the same hyperparameters.
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Figure 1: Learning curve for CartPole

Theoretically, learning curves are expected to be the same when running an experiment
multiple times. Nevertheless, it differs in reality depending on the seed for the neural
network. Figure 2 shows the learning curves for four experiments with the same setup for
Cartpole. From a visual perspective, experiment 1 and 2 are more different than experiment
3 and 4. Experiment stability covers theses differences.

To measure the differences in the learning curves, each curve is taken as a set of points
where each point represents the reached return in a specific episode. This enables the com-
parison of each episode over multiples experiments separately. Mathematically, similarity of
two points x, y that are interval scaled can be determined by 1− d−mind

maxd−mind where d = |x−y|
is the city block as the usecase has n = 1 dimensions (Tan et al., 2019, P. 95-96). This
measure is used for a pairwise comparison of the experiments. For each episode e, the total
distance dtotal,e comprises the distances of all pairwise comparisons. It can be determined
with

dtotal,e =

n∑
k=1

n−1∑
l=2

|Rk −Rl|, (k < l). (7)

Similar to the convergence stability, the experiment stability sexperiment is measured
relatively to the maximum distance dmax that can be reached between two experiments.
The maximum distance is achieved when both experiments have a distance of (rmax−rmin)
for all episodes nepisodes and is therefore calculated as follows:

dmax = nepisodes ∗ (Rmax −Rmin) (8)

Finally, the experiment stability sexperiment is based on the distances dtotal,e and dmax

for all episodes n:

sexperiment = 1−
∑n

e=1 dtotal,e
dmax

(9)

where sexperiment ∈ [0, 1]. A result of sexperiment = 1 shows perfect repeatability of an
algorithm as each experiment lead to the same result. In comparison, sexperiment = 0 means
maximum different results.
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Figure 2: Learning curves for different experiments

For the example shown in figure 2 the experiment stability is calculated exemplary.
Experiment 1 and 2 have a total distance of dtotal,1&2 = 1213 whereas the total dis-
tance for experiment 3 and 4 is dtotal,3&4 = 754. This leads to the experiment stabilities
sexperiment,1&2 = 1− 1213

50∗200 = 0.8787 and sexperiment,3&4 = 1− 754
50∗200 = 0.9246. The numeri-

cal indicator for experiment stability verifies that experiments 3 and 4 lead to more similar
learning curves and experiments.

5. Experiments

This section includes multiple experiments in order to showcase the convergence and ex-
periment stability introduced in section 4. On the one hand, the experimental setup is
explained and on the other hand, experimental results are shown in the following.

5.1 Experimental setup

For all experiments, the DDQN algorithm implemented with Python and Keras (Chollet
et al., 2015) is used to solve the CartPole-v0 problem described by Barto et al. (1983) and
implemented in OpenAI Gym (Brockman et al., 2016). Within CartPole, the goal is to
keep a pendulum that is attached to a cart upright. An exemplary upright CartPole is
shown in figure 3. The corresponding action space is [0, 1] that pushes the cart to the left
or right. Moreover, the observation space comprises cart position ([−4.8, 4.8]), cart velocity
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([−∞,∞]), pole angle ([−24◦, 24◦]) and pole angular position ([−∞,∞]). The received
rewards depend on the achieved upright time steps where one time steps corresponds to
a reward of 1. For the termination of an episode, one of the following conditions has to
be fulfilled: (1) pole angle ±12◦, (2) cart position ±2.4, (3) number of episodes > 200.
Condition (3) leads to a maximum total return of 200 for each episode (Brockman et al.,
2016).

Figure 3: Upright CartPole System

As the goal of the paper is to measure the convergence and experiment stability, each
of the following experimental setups is performed ten times with 50 episodes. An overview
of all hyperparameters for the experiments is shown in table 1.

Table 1: Hyperparameter for CartPole experiments
Hyperparameter Value

episodes 50
discount factor γ 0.99

experience replay buffer size [50, 100,.., 950]
mini batch size t [10, 50, 100, 150]

number of layer 3
layer size 16

activation function relu, relu, linear
optimizer Adam

learning rate 0.001
loss function mean squared error

For DDQN, a DQN and a target-DQN are needed to predict Q-values. Both have the
same architecture and hyperparameter. The target-DQN is initialized with the weights of
DQN and every tenth episode updated accordingly. The used network architecture is shown
in figure 4. It comprises an input layer which takes the observation space of CartPole (cart
position, cart velocity, pole angle, pole angular position) as input. Moreover, two hidden
fully connected layer with 16 neurons and an output layer with two neurons (according to
the action space) are included. The hidden layer use relu as activation function whereas the
output layer uses linear activation. In each step, the model is trained for one epoch where
Adam is chosen as optimizer with the Keras default learning rate of 0.001. The used loss
function is mean squared error.

As explained in section 3, the used DDQN implements a replay memory Dt where t
is the fixed memory size and t ∈ [50, 100, ..., 950]. In the beginning, the replay memory
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Figure 4: Network architecture used for DDQN

is initialized with experiences that followed the ϵ-greedy policy. After each time-step, a
new experience is added while the oldest experience in the replay memory is dropped.
Additionally, a random minibatch is taken from the replay memory to create training data.
The size of the minibatch is besides the replay memory size the second hyperparameter
which is tested with different values in the range of [10, 50, 100, 150] in the experiments.

In order to ensure the balance of exploration and exploitation in the training process
over episodes, the Boltzmann exploration policy (Cesa-Bianchi et al., 2017) is used. Here,
action probabilities depend on Q-values and softmax is used to determine the distribution
over the actions. The temperature θ ∈ [0.1, 10.0] controls the exploration of the policy.

5.2 Experimental results

As mentioned in the experimental setup, convergence and experiment stability are analyzed
based on the hyperparameter minibatch size and replay buffer size. All of the following
result figures show on the one hand the stability averaged over ten experiments and on the
other hand the standard deviation.

5.2.1 Convergence Stability

Figure 5 shows the convergence stability curve depending on the minibatch size. It reaches
its maximum sconvergence = 0.9545 with the lowest minibatch size of 10. With increasing
minibatch size, the convergence stability is increasing to the global minimum of sconvergence =
0.9211 with a minibatch size of 150. Additionally, the standard deviation is increasing from
0.0141 for a minibatch size= 10 to 0.0269 for a minibatch size= 150. In average the standard
deviation is 0.0183.

The results of analyzing the convergence stability for a changing replay buffer size is
shown in figure 6. Here, two different values for the minibatch size are presented. On
the left hand figure, the minibatch size= 10 leads to a convergence stability between 0.934
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Figure 5: Convergence Stability for different minibatch sizes (The dark blue line represents
the average whereas the light blue filled area represents the standard deviation)

and 0.9573. The highest stability is found with replay buffer size= 50 whereas the global
minimum is reached with replay buffer size= 900. The standard deviation ranges from
0.0101 to 0.0236. In comparison to that, a minibatch size= 50 decreases the convergence
stability curve for a changing replay buffer size. This curve is presented on the right hand
image of figure 6. The convergence stability achieves a global maximum at replay buffer
size= 200 with sconvergence = 0.9373. The global minimum is reached with sconvergence =
0.9146 at a replay buffer size of 650. The convergence stability has a standard deviation
between 0.0109 and 0.0279. The average standard deviation is 0.0142 compared to 0.0177
for a minibatch size of 50.

Figure 6: Convergence Stability for different replay buffer sizes and minibatch sizes (The
dark blue/orange line represents the average whereas the light blue/orange filled
area represents the standard deviation)
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5.2.2 Experiment Stability

The experiment stability is analyzed similarly to the convergence stability. Figure 7 presents
the results for an increasing minibatch size and a fixed replay buffer size= 500. The ex-
periment stability is monotonously decreasing from the maximum sexperiment = 0.949 to
the minimum sexperiment = 0.9047. The standard deviation reaches the highest value with
0.0205 at a minibatch size of 50, The lowest standard deviation is found at a minibatch
size= 150 with 0.012. The average for the standard deviation for the convergence stability
is 0.0162.

Figure 7: Experiment Stability for different minibatch sizes (The dark blue line represents
the average whereas the light blue filled area represents the standard deviation)

In order to analyze the experiment stability for a changing replay buffer size, figure
8 shows the corresponding curves for a minibatch size of 10 on the left hand side. The
right hand image presents the results for a fixed minibatch size of 50. The experiment
stability curve for a minibatch size of 10 results in stabilities between sexperiment = 0.9228
and sexperiment = 0.9511. The experiment stabilities deviate with a standard deviation of
miminum 0.0084 (replay buffer size= 600) and maximum of 0.0305 (replay buffer size= 900).
By increasing the minibatch size to 50, the experiment stability curve is shifted downwards
towards a lower stability. With this setup, a global maximum is reached with sexperiment =
0.9176 at a replay buffer size of 50. Setting the replay buffer size to 650 results in the
lowest experiment stability with sexperiment = 0.8801. Furthermore, standard deviations
range from 0.0142 to 0.0334. In average it is 0.0223 which is higher than for the setup with
a minibatch size of 10 where the average standard deviation is 0.0143.

6. Discussion

The convergence and the experiment stability are analyzed through experiments with adapt-
ing the replay buffer size and minibatch size. The results show impacts on both stability
metrics. First of all, increasing the minibatch size is the main factor for the reduction of
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Figure 8: Experiment Stability for different replay buffer sizes and minibatch sizes (The
dark blue/orange line represents the average whereas the light blue/orange filled
area represents the standard deviation)

stability. Here, an increase from 10 to 150 leads to a 3.5% lower convergence stability and a
4.6% lower experiment stability. Additionally, the standard deviation increases with higher
minibatch sizes. In comparison to that, the replay buffer size has a smaller impact. While
increasing the hyperparameter, both stability measures fluctuate in a range of 3%.

The introduced metrics focus on different aspects of stability. Especially with the help
of the convergence stability, the goal is to minimize instabilities in the learning curve.
This possibly leads to curves that on the one hand show minimum instabilities but on the
other hand no learning process. Meaning that within the learning process, the total return
remains almost the same. As this is not the intended goal, learnings could be included
in the metrics or used in order to develop further metrics. Appendix A shows exemplary
a comparison of instability and learnings. Here, learnings is defined corresponding to the
instabilities in the convergence stability: it sums up all increases in a learning curve (blue
lines in figure 1) relatively to the maximum reachable learning. This approach can be used
for further research.

7. Conclusion

In this paper, new metrics for measuring stability of DDQN is proposed. A distinction is
made between convergence stability and experiment stability. The first one refers to the
monotonicity of the learning curve of an experiment whereas the second metric determines
the similarity between the results of multiple experiments. Both metrics were determined
and analyzed using the example of replay buffer size and minibatch size. The experiments
lead to the conclusion that the deterioration of stability is stronger when the minibatch size
is increased than when the replay buffer size is increased.

The paper is limited to measuring the stability of DDQN while changing the hyperpa-
rameters replay buffer size and minibatch size. In future, more hyperparameters could be
analyzed to get a better understanding of the impacts. This possibly enables to determine
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parameters that maximize stability. Moreover, the stability metrics do not take into ac-
count whether or how much an agent is learning within an experiment. Therefore, a further
research direction is the integration of learnings into the introduced metrics.
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Appendix A.

Figure 9: Comparison of Learnings and Instabilities for different replay buffer sizes and
minibatch sizes
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