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Abstract. The effects of basic income, a certain number of coins paid
to every individual without conditions, have received growing interest
in research in recent years. Real-world studies are difficult to perfom
due to their high costs. Simulating them in a multi-agent environment
could therefore help to gain information on its influence on economic
individuals and social welfare. We extend the AI-Economist’s recently
published foundation framework by a simple universal basic income
model and train RL agents using Reinforce and PPO to act as an
individual in the environment and a social planner to set taxes and the
universal basic income to measure its influence on social welfare.
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1 Introduction

In recent years, numerous applications of reinforcement learning in the field of
economics and finance have been researched [4]. Above all, reinforcement learning
has been applied to learn policies and bots for stock markets [1,17]. Recently,
Zheng et al. have published a paper in which they proposed a framework that
simulates an environment as a Gather-and-Build-game and used reinforcement
learning methods to learn a tax policy that optimizes the environments social
welfare [18].

Our main contribution is adding universal basic income to the environment
and measuring its influence on the environment’s social welfare. The effect of
universal basic income on the social welfare has received growing interest in
research in recent years [3,7,10,11]. Van Parijs describes the basic income as
giving ”all citizens a modest, yet unconditional income, and let them top it
up at will with income from other sources” [10]. The introduction of universal
basic income has a positive effect on the people’s well-being, which has shown
especially during the COVID-19 pandemic [2]. And, it could affect social welfare
positively as well. In our implementation, the amount of coins paid as universal
basic income is controlled by the social planner, which is trained along with the
individuals, called mobile agents. Alternatively, the basic income can be fixed to
a constant value. Then, it is interesting to see how this is influencing the planner’s
tax policy. For training, we implement both the Reinforce [16] algorithm and
Proximal Policy Optimization [14].
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This paper will be structured as follows: Section 2 contains a short overview
on social welfare and tax policies. In section 3, the environment’s details will
be explained. Section 4 will address the Reinforcement Learning methods that
we implemented for this work and how they are applied to learn tax policies. In
section 5, we will explain some logic that we added to the simulation, including
the universal basic income, followed by a description of our experiments and
results follows in section 6 and the discussion in section 7.

2 Basics on Taxation

This section addresses some basics of economics and taxation. First, section 2.1
explains how an environment’s social welfare can be measured. In section 2.2,
we will give some information on the traditional taxation methods used in [18].
All of them are already implemented in the framework.

2.1 Social Welfare

To find optimal taxation schedules, it must be determined what exactly is to be
optimized. The planner tries to maximize the social welfare. Zheng et al. use a
social welfare function (swf) that is a product of the environments’ productivity
and equality among the agent’s wealth. To measure the equality eq(xc) ∈ [0, 1]
they use

eq(xc) = 1− gini(xc) · N

N − 1
, (1)

where xc = (xc
1, x

c
N ) is the vector of coin endowments for the number of agents

N and the gini index is a well-known measure of inequality with

gini(xc) =

∑N
i=1

∑N
j=1

∥∥xc
i − xc

j

∥∥
2N

∑N
i=1 x

C
i

. (2)

Zheng et al. define the productivity of an environment as the sum of the agents’
coin endowments, which is given by:

prod(xC) =

N∑
i=1

xc
i . (3)

As stated before, they now use

swf(xc) = eq(xc) · prod(xc) (4)

to measure the social welfare of the environment [18].
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2.2 Tax Policies

Following Zheng et al. [18], we use the Baseline Taxation methods to compare
the RL agents’ results with: US federal single-filer 2018 tax schedule and the
Saez tax formula [12].

For the US federal tax schedule, there are fixed marginal tax rates

τ = [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37] (5)

given [18].
The Saez formula is a framework for computing optimal income tax rates

proposed by Emmanuel Saez in 2001 [12]. They compute the effect of a change
in tax rates on the social welfare, called elasticity. The effect can be divided
into a mechanical effect and a behavioral response. The mechanical effect just
expressed the change of tax for a constant agent’s pre-tax income for a change
in the tax rate. The behavioral response expresses the change on the pre-tax
income in dependence of a change in the tax rate. This elasticity is then used to
compute the optimal tax rate. See [12] for details on computation.

3 Environment

We use the AI Economist’s economic simulation framework called Foundation,
introduced by Zheng et al. in 2020 [18]. The gym-like framework simulates a
Gather- and Build Game with multiple mobile agents which can collect and
trade material such as stone and wood, and build houses in a grid-world to earn
coins. The simulation is running for a certain number of timesteps T . The 25×25
grid-world that is used is shown in fig. 1. The simulation also includes a planning
agent which sets taxes for the individuals. For comparison of the agent’s learned
tax policy with other state-of-the-art methods, the framework also includes the
possibility to use different tax policies. In this section, some of the environment’s
included dynamics will be explained. For more detail, see the original paper [18].
Later, in section 5 we will explain some extensions we made to the environment.

3.1 Dynamics

First, we will describe some of the environment’s general dynamics.

Coin As mentioned before, coins are earned by trading resources (stone and
wood) and building houses using resources. The framework is build in an
expandable and customizable way, meaning that further resources and activities
can be added and e.g. the number of resources needed to build a house can be
adjusted to obtain a more realistic simulation. However, for our work we use
the default values and components. Thus, an agent can build a house with one
unit of both stone and wood.
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Fig. 1. Example of a Grid-World from [18], containing wood, stone, built houses and
water.

Skill The coin earned by building a house depends on the agent’s building skill,
which is generally determining how much coin an agent is able to earn by one
unit of labor. Every agent also has a collecting skill which determines how many
resources it collects when deciding to collect either stone or wood.

Labor An agent’s labor is defined as the sum of labor related to the agent’s
activities. For example, building a house, gathering material and trading is
associated with a fixed effort or labor that is needed for this activity.

Income Taxation The simulation uses periodic income taxes with bracketed
schedules: Bracketed schedules define B income brackets [mb, bb+1], with m0 = 0
and mB = ∞. Let Tp with T mod Tp = 0 be the tax period length. Then, tax
period p ranges from timestep p ·Tp to (p+1) ·Tp for every p ∈ {0, . . . , T

Tp
}. For

tax period p, the planner will choose a marginal tax rate τb for every income
bracket at timestep p · Tp and collect taxes in the following Tp timesteps which
will be redistributed evenly between the mobile agents at the end of the episode.
The tax payment for an agent’s income z in one tax period is then defined by

T (z) =

B∑
b=0

τb · ((mb+1 −mb)1(z > mb+1) + (z −mb)1(mb < z ≤ mb+1)))

=

B∑
b=0

τb ∗max(min(mb+1, z)−mb, 0), (6)
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where

1(x) =

{
1 if x is true

0 else
(7)

is an indicator function. The marginal tax rate τb determines the gradient of the
total tax in the bracket as shown in fig. 2.

m0 m1 m2 mB−1

z

T (z)

Fig. 2. Bracketed Schedules

Reward An agent will then try to maximize its coin outcome while minimizing
the labor done to achieve that outcome. This is achieved by the way the
environment computes the agent’s reward: Labor has a negative impact on the
reward while the coin earned has a positive impact. Mathematically the reward
is expressed as the difference between the agent’s utility (see eq. (8)) between
timesteps. The agent’s utility at timestep t is defined as

ui(x
c
i,t, li,t) = crra(xc

i,t)− li,t, , (8)

where li,t denotes the total labor of the i-th agent until timestep t and

crra(z) =
z1−η − 1

1− η
. (9)

Constant Relative Risk Aversion (crra) is a model for the diminishing
marginal utility of money [5,18]. η is a hyperparameter that determines the
extent of diminution. Figure 3 shows the crra function for different values of η.
A high η means that an agent which has already earned a high number of coins
benefits less from earning another coin compared to a small η.
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Fig. 3. crra for different η-values.

Zheng et al. use η = 0.23, which we follow. Equation (8) then defines the
utility as a difference of the earned coins’ utility and the labor done.

The reward is then computed as follows:

ui(x
c
i,t, li,t)− ui(x

c
i,t−1, li,t−1). (10)

The planner’s reward is computed as the change in social welfare at a
certain timestep. The social welfare function used has already been described
in section 2.1. Now, in order to compute rewards at the current timestep t the
difference

swft − swft−1 (11)

is used, where swft denotes the social welfare at timestep t, computed with
eq. (4) and coin endowments xc

t at timestep t.

3.2 Observations

The observations of the environment are returned as a dictionary in every step,
containing one entry for each agent. The entries contain a map in format H ×
W ×C. C is the number of objects (e.g. stone) which can be located in a certain
point of the map. The planner receives the full map, such that H = W = 25,
while the mobile agents only receive a local view of the map with H = W = 11.
Additionally, the observations contain some of the agent’s and the environment’s
information such as its skill and the default for coins earned by building a house,
which is then combined with the agent’s skill to compute the coin received by
the specific agent. The time is also part of the observation, as a fraction of the
whole episode’s length, which is fixed. Each agent also receives an action mask
within its observation, with information on which action is allowed in the current
state. The agents also receive information on the current tax rates. The planning
agent also gets information on each mobile agent’s income.
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3.3 Actions

The planner can select one out of 22 rates ({0, 0.05, 0.1, ..., 1.0}) for each of seven
tax brackets. Actions are taken only every 10th timesteps, otherwise all actions
but the NO-OP action are masked via the action mask mentioned above.

The mobile agents can decide to move, gather, trade or build a house. The
action mask is a result of conditions registered for the actions, e.g. owning one
unit of both stone and wood to build a house.

4 Reinforcement Learning

This section will address the Reinforcement Learning methods we use
theoretically in addition to some basics of Reinforcement Learning. We use
two different training methods: Proximal Policy Optimization (PPO) [14]
and Reinforce [16].

The general problem from section 3 can be described as a multi-agent system.
In this paper we use an environment with six mobile agents and one planner.
Following [18], all six mobile agents use the same underlying model to learn a
policy for efficiency. However, all agents receive a different observation containing
its skill, inventory, masks etc. such that they can still choose different actions.
The planning agent uses a separate underlying model. Details on the models’
structure are summarized in fig. 11 for the mobile agents’ model.

For multi-agent systems, the interaction can be separated into competitive
and collaborative elements. In competitive environments, the agents will
compete with each other trying to maximize their own rewards. In collaborative
environments, the agents need to work together to reach a target and maximize
their reward [9].

For the economic simulation described in section 3, both elements can be
found. On the one hand, agents compete for resources which can be gathered
and then used to build houses etc. On the other hand, they can collaborate by
trading their resources and maximizing the rewards of both, e.g. by enabling
both to build a house by that trade.

The same applies to the interaction between the planning agent and the
mobile agents: The mobile agents are dependent on the planning agent to set a
tax that is not too high, such that they receive enough income for their labor.
However, mobile agents will try to maximize their own reward, which could lead
to less equality and less reward for the planning agent as a consequence.

We will now start to mathematically define the multi-agent system. First, we
define the set of mobile agents

M = {mi|i ∈ {1, . . . , nagents}}, (12)

where nagents is the number of mobile agents. The set of agents is then defined
by

A = M ∪ {p}, (13)
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with planning agent p. Zheng et al. follow Sutton & and Barto [15] by defining
the ”partial-observable multi-agent Markov Game” [18] as a Tuple

(S,A, r,A , γ, o, I), (14)

where S is the set of states, with st the state at timestep t. A defines the Action
spaces for every agent. Every agent i ∈ A receives a partial observation oti of
the world at timestep t, as described earlier in section 3.2. At every timestep t,
every agent i also receives a reward rti and transitions to the next step by using
the env.step function which Zheng et al. denote mathematically as transition
distribution I(st+1|st, at). For each agent i ∈ A , a policy

πi(a
t
i|oti, ht

i; θi) (15)

needs to be learned to maximize the agent’s discounted rewards

dti =

T−t∑
j=0

γj · rt+j
i , (16)

where γ ∈ (0, 1) is the discount factor, T is the overall length of an episode and
θi denotes the model’s weights. ht

i is a hidden state which is implemented using
a Long Short-Term Memory Network [6] in both Zheng et al.’s and this work.

Zheng et al. describe the optimization problem using inner-outer-loop RL,
where the mobile agents learn in the inner loop within the tax periods and the
social planner learns to adapt its tax policy at the start of every tax period.
However, the training structure is not a nested loop, but the social planner and
agents learn simultaneously with the social planner using the agents’ actions
within the tax period for its training [18].

For clarification, we will now define this training algorithm in a very
general way without using a concrete learning algorithm, so we basically
rewrite the inner-outer-loop algorithm from [18], that is sampling from multiple
environments simultaneously. 1 2

4.1 Reinforce

Reinforce [16] is a policy gradient method first proposed by Williams et al.
Reinforce is a Monte-Carlo method, so the full episode has to be sampled
before training using the trajectories. The algorithm is shown in the following
algorithm 2. Note that we write the algorithm in a way that allows integration
in the general training algorithm 1 above: More specifically, we assume that the
episode’s data is already generated as Di∀i ∈ A , such that only the training
itself is mentioned.3

1 Note that for some algorithms, e.g. Reinforce, h = T is required.
2 The states used as model input are actually a series of timesteps of state, which
are used by the LSTM. Collection the timesteps is done by a memory class in our
implementation, not by the environment. For simplicity, here it is assumed that the
e.step() function already returns a series of timesteps.

3 θi is the same as θj for all i, j ∈ M
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Algorithm 1 Inner-Outer-Loop RL-algorithm based on [18].

Input: number of episodes nepisodes

Input: episode length T , tax period length Tp, Sampling horizon h,
Input: number of environments nenvs

Input: set of agents A = M ∪ {p}
Output: trained policies πi for every agent i ∈ A

1: E = list of nenvs environments with episode length T and tax period length Tp

2: for episode ∈ {1, . . . , nepisodes} do
3: s = [e.reset() for e ∈ E ]
4: initialize lists Di, i ∈ A ▷ transitions for mobile agents M and planner p
5: for t ∈ {1, ..., T} do
6: Sample action ai,e for e ∈ E and i ∈ A using πi

7: ▷ ae
i == NO-OP unless t mod Tp == 1

8: for e ∈ E do
9: for i ∈ A do
10: ote,i, r

t
e,i = e.step(s, at

e,i)

11: for i ∈ A do
12: Di = Di ∪ {(at

e,i, o
t
e,i, r

t
e,i)|e ∈ E }

13: s = s′

14: if t mod h == 0 then
15: for i ∈ A do
16: train policy πi on Di using a training algorithm
17: ▷ πi = πj∀i, j ∈ M

18: reset set Di for every i ∈ A

19: return policies πi with i ∈ A

Algorithm 2 Multi Agent Reinforce Algorithm, adapted from [15].

Input: episode trajectories Di for every agent i ∈ A
Input: episode length T
Input: learning rate α > 0
Input: policy parameters θi for every agent
Output: trained policies πi for every agent i ∈ A

1: for i ∈ A do
2: for e ∈ E do
3: for t ∈ {1, ..., T} do
4: sample (at

e,i, o
t
e,i, r

t
e,i) from Di

5: Compute the discounted rewards dti using eq. (16).
6: Apply the baseline:

dti =
dti − d̄ti√
var(dti)

. (17)

7: Update the policy parameters by

θi + α · dti · ∇ lnπi(a
t
e,i|ote,i, ht

e,i; θi). (18)
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In practice, instead of eq. (18) we compute

yte,i = (1− α · dti) · πi(a
t
e,i|ote,i, ht

e,i; θi) + α · dti · ate,i, (19)

which is equivalent4. The sampled observation ote,i and yte,i are the used to train
the policy using the Adam Optimizer [8].

Reinforce is an algorithm that is easy to implement but it also has some
issues. First, Reinforce is a Monte Carlo Method meaning that a complete
episode has to be sampled before the policy can be trained, as can be seen in
algorithm 2. This results in a low bias because the value function is known as
the whole episode is simulated. However, the variance is high since real instead
of estimated values are used. This can lead to slow training and a high number
of episodes needed. Increasing α could lead to faster, but unstable training [15].
Another issue of Reinforce is that often the policy will be trained to a local
optimum and stop exploring. Using an entropy bonus can solve this problem [9].
The entropy bonus will be explained and applied in the following section 4.2.

4.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) was introduced by Schulman et al.
in 2017 [14]. They propose different loss function to train the actor network.
One of these uses a KL divergence which is measuring the distance between
distributions, in this case the old and the new policy. However, we use a clipping
function that is combining an actor and a critic and is defined by

LCLIP+V F+S
t (θa, θc) = Ê[LCLIP

t (θa)− c1 · LV F
t (θc) + c2S[πθa(st)]], (20)

where θa, θc are the actor’s and the critic’s losses.5 The critic learns a state
value function, generalized advantage estimation [13]. Generalized advantage
estimation uses an estimator of the advantage of taking action at in state st to
reduce the variance of the policy gradients.6 It is defined by

δVt = rt + γV (st+1)− V (st). (21)

V denotes the value function that is in practice estimated by the critic. The
generalized advantage estimator (GAE) the action at timestep t is then given by

ÂGAE(γ,λ) =

Tmax−t∑
l=0

(γλ)l · δVt+l, (22)

where Tmax denotes the maximum timestep sampled. We abbreviate ÂGAE(γ,λ)

by Â in the following. λ has a similar meaning as in the TD(λ) algorithm [13].

4 which has been shown in the lecture
5 In our implementation, actor and critic share parameters.
6 We exclude the indices e, i for the current environment and agent for simplicity.
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The critic’s loss LV F
t is then the squared error between the critic’s output

and the generalized advantage estimator. S denotes an entropy bonus computed
as ∑

a

π(a|ot, ht; θc) · lnπ(a|ot, ht; θc). (23)

The entropy bonus is high when the distribution is close to uniform such that
all actions have a similar probability of being taken and low when one action
has a probability close to 1. Maximizing the entropy or minimizing the negative
entropy can therefore make sure that all actions keep a realistic chance of being
selected, such that the policy still explores the environment [9].

The clipping loss is defined by

LCLIP = E[min(Rt(θ
a)Â, clip(Rt(θ

a), 1− ϵ, 1 + ϵ)Â)]. (24)

Rt denotes the ratio between the old an the updated policy,

Rt(θ
c) =

π(at|ot, ht; θc)

πold(at|ot, ht; θc)
. (25)

The second term inside the min of eq. (24) clips the ratio into an ϵ-range such
that the updates to the model weights do not exceed ϵ and the loss is not getting
too big, and therefore prevents unstable training [14]. The full algorithm is then
given by algorithm 3.

Algorithm 3 Multi Agent PPO Algorithm.

Input: episode trajectories Di for every agent i ∈ A
Input: Sampling horizon start and end hstart, hend Input: 1 ≥ γ, λ > 0
Input: learning rate α
Input: actor and critic parameters θai , θ

c
i for every agent

Output: trained policies πi for every agent i ∈ A

1: for i ∈ A do
2: for e ∈ E do
3: for t ∈ {1, ..., T} do
4: sample (at

e,i, o
t
e,i, r

t
e,i) from Di

5: Compute the generalized advantage estimation Â using eq. (22)
6: Compute the critic’s mse LV F

t

7: Compute the actor’s loss LCLIP+V F+S
t using eq. (20)

8: Update the actor’s parameters by descending the gradient

θai = θai −∇θai
LCLIP+V F+S

t (26)

9: Update the critic’s parameters by descending the gradient

θci = θci −∇θci
LV F

t (27)
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5 Extensions to the Environment

While training the policies we sometimes observed a lack of activity by the mobile
agents when using the original environment. As stated earlier, the mobile agents
try to minimize labor and maximize the received coins. However, no activity
leads to zero labor, zero coins gained and thus, to zero rewards. In practice, there
always are costs like salaries or costs for location that are not represented in the
environment. Therefore, the agents sometimes learned to do nothing to not get
negative rewards. To overcome this problem and analyzing the influence of some
components, we extend the environment by adding and adapting components
which are encouraging the agent to act.

5.1 Building Houses with Experience

We adopt the original component for building houses by adding experience. For
every agent, the component saves an experience value representing the number
of houses built by the agent already. The labor needed to build a house is then
reduced by a discount factor γH for every house already built. Let lH be the
labor needed to build the first house. Then, building the k-th house consumes a
labor of

lH · (γH)k. (28)

Especially in shortened periods compared to the original paper by Zheng et al.
we often have seen little activity in terms of building houses. This component
tries to solve this problem while reduced work for repeated tasks is also a realistic
assumption. In our experiments, we used γH = 0.8.

5.2 Universal Basic Income

The main component for our analysis is the universal basic income which is
integrated into the taxation and redistribution component. At the end of every
tax period the taxes are enacted and redistributed. However, we now use a
universalbasicincome that is always distributed to every agent. In general, the
component uses the collected taxes to pay the universal basic income. The coin
that is left is then also redistributed to every agent. When the collected taxes are
not sufficient to pay the universal basic income, the planner will take a debt such
that its coin endowment xc

p is reduced and might be negative. As soon as the
collected taxes exceed the coins needed to pay the universal basic income the debt
will be repaid by the surplus. The universal basic income is set by the planner
for every tax period. The agents therefore will receive an income independent of
the environment’s productivity. In our experiments, we will analyze the universal
basic income’s influence on the social welfare. Remember that eq. (3) computed
the environment’s productivity of the sum of the agent’s coin endowments. We
adapt the equation such that

prod(xc) =

nagents∑
i=1

xc
i + xc

p (29)
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to include the planner’s endowment or debt in the productivity.

5.3 License

In real environments, universal basic income is mainly designed to cover basic
expenditure for food and rent. To model such regular expenses we add a license
component to the environment. The license (e.g. for gathering resources in the
environment) is automatically paid to the planner at the start of each tax period.
The amount will be set by the planner. The collected coins are then redistributed
along with the universal basic income and the tax redistribution. However, since
this license coins are either set by the social planner or fixed for all agents, it
can not accurately model the basic expenditure named earlier. In possible future
work, further extensions should be made to the environment for that reason.

5.4 Debts

In the original framework, negative coin endowments are forbidden. We add the
possibility of negative coins for both mobile agents and the planner. Currently,
there are no interest rates for negative coins. To be able to handle negative
endowments, we must rewrite the utility function eq. (8) such that

u−
i (x

c
i,t, li,t) =

{
ui(x

c
i,t, li,t) if xc

i,t > 0

xc
i,t − li,t

, (30)

since the crra function cannot be used for negative coin endowments.

6 Experiments and Results

The details on our experiments and our results will be described in section 6.3.
First, we will give some information about the environment parameters used and
the model’s training in sections 6.1 and 6.2, respectively.

6.1 Environment Parameters

Some parameters of the environment can be set manually. Figure 4 shows an
overview on the parameters we use in this work. The main difference compared
to Zheng et al.’s paper is the number of timesteps per episode, which we have
to decrease for computational efficiency. The resource regeneration probability
determines the probability of a resource respawning after being gathered by
a mobile agent. Since we use shorter episodes, we increase the probability of
respawning in one timestep.
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Variable Original Paper [18] This Paper

Number of agents nagents 4 3
episode length (timesteps) T 1000 100
tax period (timesteps) TP 100 10
resource regeneration probability 0.01 0.1

Move Labor 0.21 0.021
Gather Labor 0.21 0.21
Trade Labor 0.05 0.025
Build Labor lH 2.1 2.1

Default build payout 10 10
Build payment max skill multiplier 3 10
Build experience discount γH 0.8

Max bid/ask price 10 5
Max bid/ask order duration 50 5

Max universal basic income 3.
Max license coin 3.

Fig. 4. Comparison of environment parameters in [18] and this work.

6.2 Model Training

For both the planner and the actor, we train models that are using Long
Short-Term Memory [6] Layers. The map is processed by a Convolutional
LSTM followed by a Global Average Pooling Layer. The flattened observations,
including the tax rates etc., also passed through a LSTM layer. Then the
observations are concatenated and processed by some Dense layers. To put
out the distribution of actions to be taken, the Dense layers’ output is then
multiplied by the action mask.

For PPO, parameters between actor and critic are shared. For the critic’s
output, different Dense layers are used at the model’s end. Figure 11 shows a
summary of a mobile agent’s model with shared parameters between actor and
critic. 7

Figure 6 shows that PPO trains much faster than Reinforce as
expected. We therefore use the PPO models in the following experiments.
For both algorithms, the training could be further optimized by optimizing
hyperparameters and training for more episodes. However, our trained models
are sufficient for our purpose of analyzing the universal basic income’s effect,
for which we do not need to train an optimal model.

6.3 Experiments

We now use the PPO policies to run episodes and measure the influence of the
universal basic income. Figure 7 shows the grid-map at different timesteps. The

7 For the planner, the model’s structure is more complicated since it can take multiple
actions at one timestep (setting a tax rate for every bracket etc.).
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Algorithm Variable Value

Reinforce Number of episodes nepisodes 200
Sampling horizon h T
Number of environments nenvs 40
Reward discount factor γ 0.99
Step size α 0.01
Planner learning rate 0.01
Agent learning rate 0.01

PPO Number of episodes nepisodes 120
Sampling horizon h 20
Number of environments nenvs 30
Reward discount factor γ 0.95
Value function loss weight c1 0.2
Entropy loss weight c2 0.02
GAE lambda λ 0.99
Planner learning rate 0.001
Agent learning rate 0.001

Shared Planner LSTM timesteps 10
Agent LSTM timesteps 5

Fig. 5. Training parameters
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Fig. 6. Comparison of PPO and Reinforce training in terms of rewards and the
social welfare of the environment. For both 10-episode averages were used for plotting.
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beige and olive-green visualize wood and stone, respectively. The circled stars
correspond to the agents. The squares in the agents’ colors represent their built
houses. In general, little activity can be seen since the environment is built for
longer episodes.

Fig. 7. Map resulting of an episode using the PPO policies.

Then, we compared the trained PPO policy to the tax policies described in
section 2.2. For all experiments we used the average taxes, basic incomes etc.
from multiple environments. The marginal tax rates set by our trained policy
are very similar to the ones computed using the Saez framework. Lower incomes
are taxed a little less though as can be seen in fig. 8.

Additionally, the social welfare achieved with the RL agents and Saez is
almost the same. However, for Saez it seems like there was one high income in
the last timestep and sampling more environments might be necessary for more
accurate results. In terms of equality, the RL agents achieve better results.

Now, we will measure the influence that the universal basic income has on
the social welfare. For that, we will run the simulation for 5 environments with
different settings:

– The universal basic income and the license coins are controlled by the
planning agent, abbreviated as (model ubi lc),

– the universal basic income is controlled by the planner, while the license
coins is controlled by the planner, (model ubi x lc),

– both universal basic income and license coins are fixed, (x ubi y lc).

Figure 9 compares the average social welfare of 15 environments for different
environment settings in terms of basic income and license coin. First, it shows
that our extensions to the environment lead to a higher overall social welfare
compared to the original environment, which is basically equivalent to 0 ubi 0 lc.
However, since the agents are trained in environments with basic income and
license coins enabled (and set by the social planner), we can not take reliable
conclusions from that fact. Indeed, comparing the environments in which the
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Fig. 8. Comparison of Tax frameworks with average values from 10 environments.
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license coins were fixed to 2 shows that a basic income that is controlled by
the social planner leads to higher social welfare indeed compared to disabled
basic income. The same applies when the amount of license coins to be paid
is controlled by the social planner. In fact, both equality and productivity are
higher when the social planner controls the basic income compared to when basic
income is disabled as shown in fig. 10.
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Fig. 10. Comparison of productivity and coin equality with and without universal basic
income.

Despite the restrictions on the realism of the framework, which will be
discussed in more detail in the following section, our experiments suggest that a
basic income can increase an environment’s social welfare.

7 Discussion

We have added a universal basic income component to the AI-Economist’s
foundation framework and implemented PPO and the Reinforce algorithm
to train policies for economic individuals and a social planner. We observed that
in the AI-Economist’s economic simulation paying individuals a basic income can
indeed increase equality and productivity and thus social welfare by enabling all
individuals to participate by trading resources with each other and paying basic
expenditures, modeled by the license coin.

A basic income is designed to cover the individual’s most necessary costs such
as food or rent. As already mentioned, we tried to model this by introducing a
license coin that has to be paid at every tax period’s start. This is a very simple
and inaccurate model since individuals could reduce their costs for rent etc.
up to a certain point. To receive more meaningful results those necessary costs
should be modeled in a more sophisticated way. That could for example include
modeling individual’s health, influenced by food costs or rent, which could then
be chosen by the individual agents. The health could then influence the social
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planner’s expenditures for medical treatment such that the planner benefits from
individuals being healthy. To receive a more realistic environment, introducing
more sources for an individual’s income would be helpful in possible future work
as well.
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A Appendix

Fig. 11. Summary of the mobile agent’s model.


