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Abstract. In this work, explainable artificial intelligence (XAI) visual-
ization methods are applied in the following fields: (i) to examine the
training process of a deep Q-learning Atari agent, (ii) for insights into
transfer learning between Atari agents and (iii) to investigate how MATS,
a modular approach proposed in this work, functions. The visualizations
methods proof to be useful in all of these areas giving strong hints about
the inner workings of a model and why an agent succeeds or does not at
a given task.
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1 Introduction

The field of (deep1) reinforcement learning (RL) - and machine learning (ML)
in general - is continously growing. With ML applications gaining a foothold in
more and more domains there is a demand for transparency and fairness in the
used algorithms. This means e.g. that a model should not only give a prediction
(like “Will you get a loan?”) but also a reason (“Why you will/won’t get a loan”)
for a prediction. The need for explainable artificial intelligence (XAI) stems from
the fact that the applied ML models usually are neural networks (NNs) which by
design represent a black box, which means they are not explainable. The goal of
the field of XAI is to elucidate how these opaque models work for interpretability,
ethics and debugging reasons.

In this work, the main goal is to understand how and what a deep Q-learning
Atari agent learns during the training process. To accomplish this, post-hoc XAI
visualization methods are being applied to the agent’s NN. After presenting the
related work (section 2) and giving background on the methods used and the
1 There is a distinction between RL and deep RL, but in this work deep RL will simply
be refered to as RL.
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theory behind them (section 3), this work is then divided into three parts. In
the first part (section 4), the training process of an Atari DQN agents will be
examined using an analysis of saliency and feature maps. In the second part
(section 5), transfer learning between Atari agents will be investigated. In the
third part (section 6) an approach called MATS is proposed that separates the
agent into multiple modules that each have their own task. This approach is
also inspected using XAI methods. In the end, this work closes with a summary
(section 7).

2 Related Work

In the following section an overview will be given on research done in the topics
touched by this work. Also it will be described how this publication differentiates
from research already done.

RL and XAI: There exist publications that make use of methods from
the field of XAI to explain the decisions of a RL agent. For example Z. Wang
et al. [39] and Atrey et al. [1] use saliency maps (see section 3.3) to visualize
what an agent focuses on for a value estimate. Greydanus et al. [11] propose
a perturbation-based approach to visualize an agent’s reasoning. Attention [2],
which has proven to improve performance and interpretability of NNs, has also
been applied in multiple ways in RL [6,24,30]. J. Wang et al. [38] present DQN-
Viz, which is an approach that is more in spirit of this work, since it provides a
lot of insight not only of the final agent but also the training process, providing
multiple visualizations using a visual analytics approach.

As described, this work also tries to elucidate the training process of an agent
and not (just) the decision making of the final agent. This means for example
answering questions like: At what point in training is the agent able to handle
certain situations and why? To answer these questions, in addition to saliency
maps, this work also uses feature maps, filter visualizations and statistics on
the weight changes in the NN of an agent. These methods are then also applied
in the fields of transfer learning (part II, section 5) and the MATS approach
proposed in part III (section 6).

RL and Transfer Learning: Transfer learning is the practice of using parts
of an already trained ML model on a new task. Zhu et al. [41] provide a survey
on RL and transfer learning. They organize different approaches into the subcat-
egories of (i) learning from demonstrations, for example from a human expert,
(ii) policy transfer from one or multiple pretrained policies, (iii) representation
transfer, which means transfering feature representations (iv) inter-task map-
ping, which uses mapping functions between a source and a target domain and
(v) reward shaping, which adds additional rewards to guide the agent in the
direction of good solutions.

In their future perspectives section, Zhu et al. bring up the point of inter-
pretability in the context of transfer learning. This is the point this works comes
in as it tries to evaluate the success of multiple representation transfer learning
tasks based not only on metrics (i.e. return) but also on XAI visualizations. This
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is how it could be made easier to interpret why a representation transfer was
a success or not. (What parts of the input does the agent focus on using this
representation transfer in comparison to a normally trained agent?)

RL, Modular NNs and Autoencoders: For reasons of interchangeabil-
ity, explainability and performance, the tasks of a NN can be split into several
modules. In RL, this idea is closely related to hierarchical RL, where a task and
actions are grouped up and/or divided, usually ranging from a top-level view
to a detailed one. Calvo et al. [4] present a hierarchical, modular approach for
autonomous robot navigation. Kulkarni et al. [20] propose a hierarchical method
for temporal abstraction in deep Q-learning. The approach of Zhang et al. [40]
consists of lower-layer workers that learn a policy and a higher-layer scheduler
that selects a policy.

In this work, to create a modular approach, autoencoders (AEs) are used,
which are a common way to learn features [15]. Multiple works have been pub-
lished in the intersection of feature learning with AEs and RL. Kimura [16] uses
features learned by an AE on images to teach a robot a game using deep Q-
Learning (see section 3.2). Van Hoof et al. [37] present a RL-AE approach for
tactile and visual data. Lange et al. [22] propose a framework that trains the
AE not before but concurrently with the agent, which might be useful because
some situations do not occur until later steps in training.

The modular MATS approach proposed in part III (section 6) is build on
autoencoder representations, which are then processed in a specific way by a
CNN.

3 Background

3.1 Neural Networks

NNs are highly parameterized, universal [7] function approximators that are
used in the field of ML [19]. They are the tool of choice in deep RL for value
approximation and policy gradient methods. They consist of input, hidden (often
many of those: deep learning) and output layers. Every layer receives the input
from the previous layer (apart from the first layer which gets the input) and
performs a linear transformation using learned weights. Usually this is followed
by a non-linear activation function. These vanilla versions of NNs are often called
multilayer perceptrons or dense NNs.

For training, a network is given labeled inputs (supervised learning) and the
task consists of predicting the correct label2. The network gets better at this task
by iteratively minimizing a defined error that describes the distance between the
network output and the target value (e.g. mean absolute error or binary cross-
entropy). This is accomplished using stochastic gradient descent (SGD) (or a
variant like Adam), which is realized in NNs using backpropagation.

Convolutional neural networks (CNNs) [23] are a type of NN that are able
to process spatial data like images (3D-arrays: height, width, channels) in con-
trast to dense networks that work with vectors as input. The learnable weights
2 Label can also refer to a regression variable and not necessarily a class.
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form a window (filter) that is sliding over the input to create the next layer by
element-wise multiplication (convolution). Local connectivity, shared weights for
all window positions and keeping the multidimensional structure are the central
concepts for CNNs. Along the lines of how multilayer perceptrons work, the out-
put of a convolutional layer (so called feature maps) is given as input to the next
convolutional layer. Often the final output of a NN is a vector like in RL value
or policy approximation tasks. To get from a spatial 3D structure to a 1D vector
the feature map of the last convolutional layer is simply flattened (i.e. all values
are sequentially added to a long vector) and than given as input to a dense layer.

Such architectures have led to great success in many fields of ML like image
classification [13] or object detection [31] and in relation to this work especially
in RL tasks that learn straight from pixels and not from handcrafted features
like in the considered Atari games. The work from Mnih et al. [26,27] presenting
a deep Q-learning approach using CNNs for solving Atari games is considered a
breakthrough and will be build onto in this paper.

3.2 Deep Q-Learning

Generally speaking, RL is the study of agents interacting with environments
learning to maximize a reward signal. Interacting means that at every time step,
the agent receives the current state s by the environment and is executing an
action according to a given policy π(s).3 Afterwards the environment yields the
next state s′ for the agent and a numerical reward r. [34]

Qπ(s, a) is called the action-value function or simply Q-value and describes
the expected return from taking action a in state s and then following policy π:

Qπ(s, a) ≡ E[R1 + γR2 + γ2R2 + ...|S0 = s,A0 = a, π] (1)

Here, γ is the discount factor, which is a hyperparameter that is used to balance
weighting between immediate and delayed rewards. The optimal action-value
function is defined as Q∗(s, a) = maxπQπ(s, a) and thus using Q∗(s, a) an op-
timal policy π∗ can be obtained by taking the action of highest value in every
state. [34]

Q-learning is an approach for learning (estimates of) optimal action-values.
Firstly, it is an off-policy algorithm, which means that the value function is not
updated necessarily using the actual taken action (determined by a behaviour
policy choosing actions epsilon-greedily) but using the highest valued action.
Secondly, it is a temporal difference learning algorithm, which means that after
every step (contrary to Monte Carlo methods) the value function - an estimate
- is updated, based on another estimate (bootstrapping). Thirdly, this approach
belongs to the category of model free methods, which means that the states and
rewards are generated by the environment and no model of the environment is
learned. [34]

3 π(s) describes a deterministic policy (output is an action a). The notation for a
stochastic policy is π(a|s) (output is probability for taking a). [34]
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Originally starting with tabular methods, a lot of today’s high-dimensional
RL tasks make use of parameterized function approximators like NNs because
the number of states is too big to be stored efficiently in tables. For example
taking an Atari game frame (128 colours, 210x160 resolution) as a single state,
the compelling size of the state space is 128210·160. Applying NNs to Q-Learning,
the parameters θi of a Deep Q-Network (DQN, see figure 1 (a) for the Atari
DQN) [27] can be optimized via SGD using the following loss function at iteration
i:

Li(θi) = Es,a,r,s′

[(
yDQNi −Q(s, a; θi)

)2]
(2)

with the target

yDQNi = r + γmax
a′

Q(s′, a′; θ−i ) (3)

where θ−i stands for the parameters of a target network. Using the same network
that is getting updated for also calculating the target leads to instabilities in
training (chasing it’s own tail). Freezing the parameters of a target network and
only updating it every τ steps leads to better training performance [27].

Another concept which has shown to improve deepQ-learning by a lot is expe-
rience replay [27]. The agent’s experiences are stored in a memory. For training,
mini-batches are randomly sampled from this memory. This decorrelates the
samples and makes the data more like i.i.d. data which is generally assumed in
NNs. It also leads to more efficient use of previous experience since it can be
used multiple times.
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Fig. 1: Network architectures used for (a) Double DQN and (b) Dueling Double
DQN with learnable parameters θ and (θ, α, β) respectively.
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In eq. 3, using the same DQN to both select and evaluate an action can
result in overoptimistic value estimates. To reduce this problem, van Hasselt et
al. [12] propose to use the target network for evaluation and the online network
for selection and call their approach Double DQN (DDQN), which uses the
following target accordingly:

yDDQNi = r + γQ(s′, argmax
a′

Q(s′, a′; θi); θ
−
i ) (4)

Wang et al. [39] state that for many states, it is not needed to estimate each
action-value because the action has no effect on what happens. For example in
the Atari game Breakout it does not matter in which direction the player moves if
the ball is very far away. However it could be useful to estimate the state-value
V (s). Wang et al. [39] propose the Dueling DQN architecture which is using
two streams to predict the state-value V (s) and advantages A(s, a) (see figure 1
(b)). With this, which states are valuable or not can be learned explicitly. Their
relationship is given by

Q(s, a) = V (s) +A(s, a) (5)

So intuitively, the advantage shows how much better choosing a specific action
is compared to the other actions. Eq. 5 could be used to naively calculate Q(s, a)
for the network output. However this formulation is unidentifiable, which means
that V (s) and A(s, a) cannot be recovered uniquely by Q(s, a).4 This results
in poor practical performance. To address the issue of indentifiability, Wang et
al. [39] propose the following formulation subtracting the average A (where θ, α
and β represent learnable parameter vectors):

Q(s, a, θ, α, β) = V (s, θ, β) +

(
A(s, a, θ, α)− 1

|A|
∑
a′

A(s, a′, θ, α)

)
(6)

This changes the original semantics of A and V by a constant but has shown
to improve performance greatly. In figure 1 (b), this step is illustrated as the
orange dueling operator. It is implemented as part of the DQN so no extra
algorithmic step is needed. This means that any deep Q-learning algorithm (like
the ones described above) can be applied for training and that V and A will be
learned automatically via SGD and backpropagation.

In this work, Double DQN (DDQN ) and Dueling DQN using the Double
DQN algorithm (DDDQN or D3QN) will be applied.

3.3 Explainable AI

The described good performance of NNs does not come without drawbacks. As
mentioned, NNs with their great number of learnable parameters are black-box
4 To illustrate this, take some constant and add it to V (s) and subtract it from A(s, a).
Q(s, a) will stay the same.
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models, i.e. they don’t give insights into their reasoning process. The field of XAI
has set itself the task of elucidating NN reasoning and to (at least partially) turn
the opaque into white-box models. According to Carvalho et al. [5], XAI methods
can essentially be categorized in the following two classes:

Ante-hoc/Intrinsic models: This refers to NNs that augment their ar-
chitecture by some component that is added before training time and learns to
explain the prediction of the network. A typical example is the attention mech-
anism which guides the model to explicitly (i.e. humans can interpret it) focus
on certain parts of the input. For example in machine translation, the “result” of
the attention mechanism for a single time step of translating is a attention vec-
tor that associates learned attention weights with the individual input parts [2].
The attention weights can be used to determine what parts of the input are
important for the current part of the translation.

Post-hoc: In contrast to ante-hoc methods, post-hoc methods are applied to
opaque models after the training is finished. Saliency maps [32] are an example
for these methods and will be applied in this work. The basic idea behind saliency
is pretty straightforward: Given a trained model and an input image, the gradient
of a output category is computed with respect to the pixels of the input image5:

∂output

∂input
(7)

Intuitively, the gradient shows how much the output (like theQ-estimate) changes
when small changes are made to certain parts the input. One can acquire saliency
maps by reshaping the gradient vector to the input image size and visualizing
it by applying some colormap (so high gradients are displayed in bright colors).
This is how saliency maps can be used to examine which parts of the input
determine the output the most.

Visualizing feature maps, which is also done in this work, can also be seen
as a post-hoc methods, since it provides insights to how convolutional layers
process inputs after the a model is trained.

3.4 Atari games

The considered environments in this work are the Atari games Breakout, MsPac-
man and BeamRider. In Breakout, the player has to destroy bricks in the wall
at the top of the screen to gain points. In MsPacman, one has to collect food
and dodge the enemies in the shown labyrinth. In Beamrider, the objective to
win is shooting the oncoming, moving spaceships. Atari games have become a
benchmark in the scientific RL community for agents that learn from pixels.

Following Mnih et al. [27], for Atari games a state s consists of four sub-
sequent gray scale frames of the game. This is because environments are
formally described as Markov decision processes (MDPs), i.e. (simply put) the
current state completely represents the process that led up to this state and all

5 So for an MxN input image the gradient vector is MxN long.
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Breakout BeamriderMsPacman

Fig. 2: Considered Atari environments for this work.

information that is necessary to decide for an action. So for example for Break-
out, the four subsequent frames hold all this necessary information: where the
objects (bricks, ball, player) are positioned and in what direction and how fast
they are moving. In contrast a single frame would not be sufficient to determine
direction and speed. Also for the next action and state it is not important e.g.
where the ball was positioned a few seconds ago, which is why only the current
four frames are taken into account.

An action a is a specific, discrete button press like “left” or “right” which
moves the agent. The rewards (e.g. for hitting a brick in Breakout) are clipped
between +1 and −1 for better comparability between environments. All Atari
tasks are considered episodic. I.e. there exist terminal states and the tasks end.
In Breakout for example, the player is given five balls (lives). After all balls are
used, one gets the final score, the bricks at the top reset and the episode ends.

4 Part I: Elucidating RL Training Behaviour

4.1 Experimental setup

In this section, the training behaviour of deep Q-learning Atari agents is exam-
ined. For this, the games Breakout, MsPacman and Beamrider (see section 3.4)
are used. They have been chosen because they represent different classes of
games. This is meant in the sense of Breakout being comparatively simple with
only the tasks of anticipating and hitting the ball in the right direction. MsPac-
man is a more complex game involving pathfinding and evading enemies. Break-
out lies somewhere between these two with moving enemies that have to be
hit.

The examined deep Q-learning algorithms are DDQN and D3QN. The used
NN architectures can be seen in figure 1, the architectures are based on [27]
and [39] respectively. Each agent is trained for 3 million steps. This is a training
time that has shown to result in agents that have a solid understanding of the
game, albeit not being perfect at it. For the sake of limited time resources6, 3
6 Training for 3 million steps takes around 10 hours on the used hardware.
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million steps seem like a good middle ground between having good agents and
also being able to carry out enough experiments to have meaningful results.
More technical details on used software, settings and hyperparameters for the
experiments done in this work can be found in the appendix.

4.2 Saliency, feature maps and filters to understand learning
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(a) Breakout
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Fig. 3: Return vs. iterations trained for (a) Breakout and (b) MsPacman.
1 iteration = 20k steps.

Figure 3 shows the received return during the stages of the training process.
It can be seen that the D3QN performs slightly better than the DDQN, which is
consistent with the findings of Wang et al. [39]. Contrary to Breakout, looking
at MsPacman, the D3QN seems to perform slightly worse than DDQN. Note
however, that after 3 million steps the agent does not perform at it’s best possible
and that this may change after more learning.

Figure 4 shows saliency maps and Q-values for the actions right and left and
for a certain state throughout training. The state shows the player located on
the right and the ball (zooming in on the picture might be necessary) moving in
the bottom left direction. Quite dynamic saliency changes can be observed. The
focus generally lies on the middle area, where the ball is moving. The saliency
changes from the left to the right and vice versa over time. In the end, the
saliency is relatively balanced with a slight focus on the side the player would
move towards applying the action. For this state the saliency does not seem to
focus on where the ball is moving throughout the training. A possible explanation
might be that the player is already positioned in the right place to hit the ball
and no correction towards the movement of the ball is needed.

In figure 5, it is displayed how two feature maps (first layer) and their filters
change during the training process. Note that the input consists of four channels
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Action:

Right

Action:

Left

Q:

Steps:

State:

500k 1000k 1500k 2000k 2500k 3000k

1.094 1.362 1.872 2.092 2.347 2.485

Q: 1.118 1.381 1.864 2.098 2.359 2.499

Fig. 4: Saliency maps throughout training for the DDQN Breakout agent.

corresponding to four grayscale frames, which leads to four filters. The filter on
the left seems to detect objects moving in the bottom left direction. This can be
derived by looking at the final filters after 3 million steps: the first one puts focus
on the top right section of the input. Throughout the channels, the attention is
then shifted to the bottom left. It can be seen that the agent needs around 1.5
million training steps to isolate the phenomenom of object moving to the bottom
left. Before that, artefacts like the line at the top are also detected7.

The filter on the right seems to detect horizontal parts of the screen like the
player in the bottom left or the boundaries of the blocks in the top area. Judging
by the feature map, the agent has learned to detect horizontal lines at 0.5 million
steps, which is quicker than the 1.5 million steps for the detection of an object
moving to the bottom left. A reason for this could simply be that the ball is a
lot smaller than the horizontal lines on the screen and thus initially neglected in
early training stages.

Similar to figure 4, figure 6 shows saliency maps and Q-values for the action
right, this time for a more advanced state. The state shows the ball moving to
the bottom right and the player being positioned in the bottom left. Starting
from a diffuse saliency map marking the general area of ball movement, the final
saliency map displays focus on already hit parts of the wall and also the direction
the ball is moving to. Compared to figure 4, more attention might be paid to
the ball because the player is not yet in the proper position the hit the ball and
needs to move towards the right.

7 Note however that filters are often ambiguous and don’t necessarily only detect a
single phenomenon.
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State:

Steps:

10k

500k

1000k

1500k

3000k

Fig. 5: Feature maps and their filters from the first convolutional layer
throughout training for the DDQN Breakout agent.

Action:

Right

Q:

Steps:

State:

500k 1000k 1500k 2000k 2500k 3000k

0.244 0.921 1.368 1.693 2.002 2.087

Fig. 6: Saliency maps throughout training for the DDQN Breakout agent for an
advanved state.
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In figure 7, the D3QN agent for MsPacman is examined. Again, saliency maps
are displayed. Three states are shown from top to bottom, the first two picture
an advanced stage of the game, the last one displays the beginning of a game.
For the top two states it can be seen how the saliency maps first outline the
labyrinth as a whole. After 3 million steps, the focus lies on the part of input
where the agent is positioned in the bottom left.

V:

Steps:

State:

500k 1000k 1500k 2000k 2500k 3000k

2.089 3.808 5.274 6.185 6.818 6.752

State:

V: 4.600 7.840 9.190 10.301 11.228 10.677

State:

V: 5.633 11.136 16.140 18.687 22.389 22.010

Fig. 7: Saliency maps throughout training for the D3QN MsPacman agent for
multiple states.

Another interesting observation that can be made from the top two states is
that V roughly equates to the remaining food in the focused bottom left area.
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For the top state, 7 points still remain in that area and V = 6, 752. For the
second there are still 12 point left and V = 10.677.

The state at the bottom paints a different picture. No noteworthy saliency
is developed during the training, not even of the general labyrinth outline. The
reason for this could be that in the beginning it does not matter which direc-
tion one chooses: the player in MsPacman moves automatically, every direction
provides food (reward, note the high V ) and the enemies are far away or have
not spawned yet.

0 50 100 150 200 250 300
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Ø 
w

Breakout - Average weight change per iteration
Conv1
Conv2
Conv3
Dense1
Dense2

(a) Breakout
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Fig. 8: DDQN weight change vs. iterations trained for (a) Breakout and (b)
MsPacman. 1 iteration = 10k steps.

Looking at figure 5 one could come to the conclusion that the filters don’t
change much anymore after 0.5 to 1.5 million steps. To examine which layers
change most at what stage of the training, the weight changes per iterations
of 10,000 steps have been calculated and visualized. This means that for every
iteration, every single weight is being compared to the corresponding weight from
the previous iteration’s model by taking the absolute deviation. Per layer the
mean absolute deviation is then calculated. The weight changes are visualized
in figure 8. It can be seen that the weight change stays constant throughout
training. At first glance this stands in contrast to figure 5 where the filters don’t
seem to change much anymore soon after training initiation. Though this does
not mean that the numerical weights don’t change anymore at all. For example a
filter could be strengthened by increasing the already high weights and decreasing
the low ones. This would not make for a big change in filter structure and it’s
visualization but still for a change in weights. Bringing figure 5 and 8 together,
the possible takeaway of this observation is the following: the CNNs learn their
final filter structures quite early in training. However they are not dead (which
could happen with ReLU [9]), refine their structures later on and - in theory -
retain their ability to change their filters.
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4.3 Forgetting in Beamrider

The experiments with Beamrider differ from the Breakout and MsPacman ones.
In figure 9 it can be seen that the Beamrider returns decrease after about half of
the training is done. Interestingly, this happens in both DDQN and D3QN. This
phenomenon is called forgetting, which is a rather common occurency in RL or
sequential learning problems in general like lifelong learning [18, 29]. The term
catastrophic forgetting or inference refers to the phenomenom of a NN forgetting
everything or a lot of what it has learned so far. The forgetting in Beamrider is
less drastic, however still notable (around 30 %) and will be investigated in the
following section.

0 20 40 60 80 100 120 140
Iteration

10

20

30

40

50

60

Re
tu

rn

Beamrider - Return vs Iterations trained
DDQN Beamrider
DDDQN Beamrider

Fig. 9: Return vs. iterations trained for Beamrider. 1 iteration = 20k steps.

Two saliency maps for Beamrider are shown in figure 10. What can be seen
is that during peak performance after about 1,000,000 steps the saliency maps
semm to focus on the important parts of the state: The horizon and lane with a
slight emphasis on the player position. After 3,000,000 steps, this has changed.
The attention is drawn mainly to the top of the screen. This is a possible ex-
planation for the degrading performance. Saliency maps for other states show a
similar shift in attention.

Figure 11 displays two feature maps for Beamrider. It can be seen, like in
figure 5, that the filters reach their general final shape quite early in training.
They also don’t change when forgetting takes place in Beamrider (after around
1,500,000 steps), so the agent seems to not generally unlearn the detection of
concepts it has already learned in the first convolutional layer. This could mean
that forgetting takes place more in the dense layers or deeper convolutional
layers. Also that both the DDQN andD3QN are forgetting after the same amount
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of steps could be a sign that the problem arises with exploring new regions in the
state space by advancing in the game, which is a common reason for oscillations
in received returns.

Action:

Right

Action:

Left

Q:

Steps:

State:

500k 1000k 1500k 2000k 2500k 3000k

1.397 2.614 3.343 3.939 4.036 4.145

Q: 1.378 2.601 3.373 3.948 4.068 4.174

Fig. 10: Saliency maps for Beamrider throughout the training process.

4.4 Conclusion of Part I

It could be shown that saliency and feature map visualization help to understand
how an agent learns and makes it’s decision. It’s applicable for both DDQN and
D3QN. Using saliency maps, it is possible to show how the attention of a model
shifts during training. Feature maps can be used to investigate at what point in
training an agent has learned certain concepts. The filters also seem finalized in
their general structure quite early in training, but looking at the weight changes
they seem to remain plastic. Forgetting in Beamrider was investigated and there
are hints that the features detected in the first layer remain stable and that
forgetting takes place in deeper layers.

In the future, of course more environments and visualization methods like
Grad-CAM could be tried out. Also other algorithms like DDPG or PPO for
continous action spaces could be examined. In general, but specifically for the
forgetting problem, it could be helpful to train longer to see if the agents recover
from their decline. Additionally, a comparison with DQNViz [38] results could be
made to see to what extend the visualizations done in this work are comparable
and provide additional insights.
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State:
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Fig. 11: Feature maps from first convolutional layer for Beamrider throughout
the training process.
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5 Part II: RL and Transfer Learning

5.1 Experimental setup

In this part, it will be investigated how well transfer learning can be applied in
the domain of RL. Transfer learning in general is described as the reuse of (parts
of) an already trained NNs for a new task. It can be distinguished between fine-
tuning weights and using frozen weights. Finetuning means using the weights
from another NN as the starting point for training on a new task [21]. Doing so,
the network can possibly access already learned concepts and does not have to
start at zero. Freezing weights means that usually the convolutional layers in-
cluding the flattened output directly after the last convolutional layer are reused
(but not included in training/finetuned) on a new task [3]. The idea is that some
already trained network has generalized enough that it’s convolutional layers can
be used as a universal feature extractor. By leaving out the convolutional layers
on the new task, training can be accelerated by simply reducing the computa-
tional costs. In many cases, using transfer learning can improve result [25,28,36].
Examples for commonly used feature extractors are VGG16 [33], VGG19 [33],
InceptionV3 [35] or ResNet50 [13], each being NNs that are trained on large data
sets like ImageNet [8].

In the following part, the goals are (i) to determine how good RL agents
trained on one task can be applied on a new task and (ii) using saliency and
feature maps to find out why transfer learning works or does not. The following
setup is chosen: An agent is trained on Breakout. Using the weights of this
Breakout agent, the following experiments are carried out:

(i) Using Breakout weights to learn Beamrider by finetuning
(ii) Using Breakout weights to learn MsPacman by finetuning
(iii) Using Breakout feature extraction to learn Beamrider
(iv) Using Breakout feature extraction to learn MsPacman

As described in section 4.1, Beamrider is - at least for humans - closer re-
lated to Breakout than MsPacman. The experiments shall also elucidate whether
this intuition translates to transfer learning, i.e. show if transfer learning works
better for Beamrider than for MsPacman. The same network architectures and
hyperparameters as in part I are applied.
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5.2 Results

Figure 12 shows the return received by the agents throughout the training pro-
cess. For finetuning, it can be seen that in the end the finetuned agents perform
on the same level as the vanilla agents. The Beamrider finetuned agent even
replicates the forgetting taking place in the vanilla agent. In the first half of
training, in both MsPacman and Beamrider there seems to be a lag in per-
formance between finetuned and vanilla agents before the finetuned ones catch
up.

Comparing the vanilla agents with the ones using the extracted features by
the Breakout agent (called freeze in figure 12), the picture is very different. The
MsPacman performance is notably worse than that of the vanilla agents and the
Beamrider agent does not seem to learn anything. In the following it shall be
examined why transfer learning succeeds or fails using multiple visualizations.

0 20 40 60 80 100 120 140
Iteration

20

30

40

50

60

70

80

90

100

Re
tu

rn

MsPacman - Return vs Iterations trained
DDQN MsPacman
DDQN Finetune MsPacman
DDQN Freeze MsPacman

(a) MsPacman

0 20 40 60 80 100 120 140
Iteration

10

20

30

40

50

Re
tu

rn
Beamrider - Return vs Iterations trained

DDQN Beamrider
DDQN Finetune Beamrider
DDQN Freeze Beamrider

(b) Beamrider

Fig. 12: Return vs. iterations trained for (a) MsPacman and (b) Beamrider.
1 iteration = 20k steps.
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Figure 13 shows saliency maps for the three MsPacman agents. For the fine-
tuned one (middle), it is visualized how during the training process the saliency
maps gets closer to the vanilla one (top), which has kind of a pyramid shape.
Looking at the agent using the features extracted by the Breakout agent (bot-
tom), it can also be seen that the pyramidic saliency from the vanilla agent is
approximated. Other saliency map comparisons showed similar findings. This
means that at least partly the Breakout feature extraction can be reused for
MsPacman and for reconstructring the saliency maps by the vanilla agent.

Q:

Steps:

State:

500k 1000k 2000k 2500k 3000k

2.609 4.550 7.551 7.123 7.629

Q: 5.330 6.980 7.847 7.913 8.038

Q: 4.846 7.256 8.705 9.273 9.342

Action:

Right

Normal

Finetune

Freeze

0.075

-0.641

-0.641

10k

Fig. 13: Saliency maps throughout training for the transfer learning MsPacman
agents for an exemplary state.
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The saliency maps for the Beamrider agents are displayed in figure 14. For the
finetuned agent it too can be seen that after 3,000,000 steps the vanilla saliency
map is approximated. The freeze agent however shows a very different saliency
map with a strong focus on only where the player is positioned but not on the
areas where enemies spawn which is at the top of the screen. Other saliency
maps even show no focus at all, they are just dark. Concluding, the Beamrider
agent does not seem to be able to pay attention to the right parts of the input
using the features extracted by the Breakout agent.

Q:

Steps:

State:

500k 1000k 2000k 2500k 3000k

1.397 2.614 3.939 4.036 4.145

Q: 1.732 2.693 3.214 3.769 4.097

Q: 2.120 2.368 2.333 2.254 2.256

Action:

Right

Normal

Finetune

Freeze

-0.046

-0.201

0.078

10k

Fig. 14: Saliency maps throughout training for the transfer learning Beamrider
agents for an exemplary state.

For further insight, the 32 feature maps of the first convolutional layer using
the Breakout agent are visualized in figure 15. Looking at the Beamrider input
(top) it can be seen that the focus mainly lies on the player position and horizon-
tal lines. This is consistent with the findings of figure 5, where it is shown that
the Breakot agent learns to detect (i.a.) the ball and horizontal lines. However,
no feature map can be made out that pays attention to the enemies in front of
the player. This is probably the reason why the saliency maps only show high-
lights in the player area and the agent does not learn. This is surprising since
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the ball in Breakout is about the same size as the enemies in Beamrider and
moves in similar ways.

Looking at MsPacman (bottom), the feature maps are very hard to interpret,
but there seem to be some representations that highlight certain parts of the
maps, horizontal lines in the labyrinth or enemies (top left for example). This
probably led to the better performance of the MsPacman agent using features
extracted by the Breakout agent.

State:

State:

Feature 

Maps:

Feature 

Maps:

Fig. 15: Feature maps of first convolutional layer Breakout feature extraction
for Beamrider (top) and MsPacman (bottom).
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5.3 Conclusion and Future Work of Part II

For finetuning, both the MsPacman and Beamrider agent reach the level of
their vanilla counterpart. However there is a lag in performance in the first
half of training. This means the finetuned agents can’t benefit from the weights
learned in Breakout. Instead, they hinder them from learning. The agents seem
to learn their new task from zero. That there is a lag in performance could be
explained by wrong weight initialization. Usually, the Glorot Initializer is used,
which initializes the weights depending on number of input and output neurons.
This improves training performance [10]. Initializing with the Breakout weights,
the Glorot conditions are not met anymore and training slows down.

It could be shown that transfer learning using features extracted by the
Breakout agent works partly for MsPacman but not for Beamrider. Furthermore
it was demonstrated that looking at saliency and feature maps, very good hints
can be found regarding why transfer learning works or does not. The introductory
assumption of the freeze Beamrider agent functioning better than the MsPacman
one was not met. This shows (once again) that human intuition and how NNs
learn are often not in line and that it is necessary to take a deeper look into how
a model works.

In the future, experiments could be carried out extracting features using
VGG19 or a comparable NN trained on ImageNet. Another approach could be
transfer learning between discrete and continuous tasks. Also transfer learning
in non-image tasks could be investigated.
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6 Part III: MATS

6.1 Main Idea

In this part, an architecure is proposed that portions the original network into
several parts with the idea in mind that each part serves it’s own purpose. This
approach will be named Modular Autoencoder-based Task Splitting (MATS) and
described in the following section.

Q(s,a)

Q(s,a)

Image Information Extraction

Dynamics Extraction

Q-Estimation

Image Information Extraction

Dynamics 

Extraction

Q-Estimation

…

(a) (b) (c)

Window width = 1

Fig. 16: General design of MATS approach: (a) vanilla DQN, (b) MATS
networks, (c) sliding window in MATS dynamics extraction.

In figure 16 (a), the vanilla DQN as it is used in parts I and II is displayed.
There are three requirements the DQN has to satisfy: (i) information has to be
extracted from the input image, (ii) dynamics between the single input images
need to be detected (like in what direction the player or enemy is moving) and
finally (iii) use this extracted information to estimate Q.

The MATS approach is shown in figure 16 (b). The requirements are explic-
itly divided between several parts of the architecture. An autoencoder is used
to compress image information of single frames into a vector. A state is then
represented by a stack of four compressed frame vectors. This state is then given
to the Dynamics Extraction CNN as input. The structure of this CNN is built
on the following hypothesis: Each index of the compressed frame vectors has it’s
own meaning and parts of the image that it compresses. This is called disentan-
glement. For example (simplified) the first entry could represent the top left of
the image while the second entry could stand for what can be seen in the bottom
right. For the extraction of dynamics, it should then be possible to find out what
changes in these parts of the image over four successive frames by comparing
the four vectors index-wise. To accomplish this, the window width of the CNN
filters is set to 1 (see figure 16 (c)). Using this constraint, each filter position
only compares a certain part of the image throughout the time sequence. Like
in DQN, after some convolutional layers the output is flattened to predict Q. In
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this setup, the autoencoder is pretrained on frames acquired by a trained agent.
On the other hand, the dynamics extraction CNN and Q-estimation head form
one single network that can be trained using any Q-learning algorithm.

Such a formulation of a RL agent could be useful for several reasons: For
one, the different parts could be reused or fine-tuned for other tasks (transfer
learning). Secondly, MATS could provide more clear representations of the data
during the described multiple task steps, which could help interpreting the deci-
sions an agent makes. Also, hierarchical architectures have shown to be able to
improve RL agents [20]. Finally, using low-dimensional representation can also
be beneficial when running an agent on slow hardware like for example some
embedded system.
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6.2 Experimental Setup

As a proof-of-concept for MATS, MsPacman as the environment and DDQN
for learning are considered. In figure 17 (a) the used autoencoder is shown.
The image input is 96x96 which differs from the 84x84 used in parts I and
II. This is because a 84x84 input is difficult to reconstruct8. As described the
autoencoder is trained beforehand using around 100,000 frames collected during
runs of a trained agent. Reconstructing Atari frames has proven to be more
difficult than expected. This is mainly because a lot of important features are
represented by very small parts of the image like the ball in Breakout or the
food in MsPacman, each only measuring a handful of pixels. Since autoencoders
are lossy compressors, these small parts are often noisy or poorly reconstructed.
For Atari game frames, using a linear output and mean squared error as loss
function has also shown to be more successful than a sigmoid output (gray
values are between 0 and 1) combined with binary cross-entropy. In the end, the
depicted architecture in figure 17 (a), using a latent vector size of 64, has shown
to reconstruct the input good enough to be considered for the MATS approach.
Some reconstructions are displayed in figure 18.

Original:

Reconstructed:

Fig. 18: Reconstructions using the MATS autoencoder.

The convolutional layers of the network shown in figure 17 (b) represent the
dynamics extractor. Note the input with a dimension of 4x64 for the representa-
tion of four consecutive frames as vectors of size 64. Also note the filters using a
width of 1 as described in figure 16 (c). Then a Flatten layer follows, leading to
the Q-estimation part. As described, Dynamics extractor and Q-estimator form
a single network that is treated as a regular DDQN and trained as such with the
difference of using the encoded, stacked input instead of pixels.

8 84x84, using a stride of 2: Encoder dimensions: 84, 42, 21, 10; Decoder dimensions:
10, 20, 40, 80 6=84.
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6.3 Results

In figure 19 the return throughout the training of the MATS agent is displayed.
It can be seen that the agent is able to learn, but that it’s return is significantly
lower (about 50 %) than that of the vanilla DQN (see figure 3 (b) for comparison).
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Fig. 19: Return vs. iterations trained for MsPacman using MATS with DDQN.
1 iteration = 20k steps.

To check the inner workings of this architecture, saliency maps are applied to
the encoder and DDQN, see figure 20. Like explained, ideally, each latent vector
index would pay attention to different parts of the frames (disentanglement). To
examine whether this assumption is true, the saliency maps for multiple indices
are visualized. Index 5 shows no clear focus with attention spanning all over
the map. The labyrinth outline is visible though. Saliency for index 12 suggests
that this index is responsible for parts in the middle of the frame. Unfortunately
though, most of the encoder saliency maps look like that of index 5, which means
they are very diffuse and can hardly be interpreted.

Looking at the DDQN saliency map for the action up, one could expect a
highlighted index 12 since this part of the latent vector seems to correspond to
parts of the state that are above the current player position - but this is not the
case. Instead, in general the saliency maps seem to be very similar for the action
up and left with only nuanced differences. Also for other states, the DDQN
saliency looks similar to this one. What seems to be the case here is that the
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image information is not stored disentangled but rather very distributed among
the latent vector.

State:

Action:

Up

Action:

Left

Encoder Saliency Maps:

125

Latent Vector 

Index:

12

5

DDQN Saliency Maps:

Fig. 20: Saliency maps for MATS for a certain state.

So deriving from the saliency maps, the assumption of disentangled repre-
sentations in the latent vector was false. This could be a reason for the mediocre
performance since the dynamics part is built on this not met assumption. How-
ever there exist approaches to disentangled representations and other possible
augmentations to the NN that could help, which will be discussed in section 6.4.
So making this approach work could still be possible by attempting to meet the
assumptions made in the design of the MATS architecture.



28 M. Dammann

6.4 Conclusion and Future Work of Part III

From a proof of concept perspective, it can be summarized that the MATS
agent is able to learn in the MsPacman environment using Double Q-Learning,
albeit on a lower level than the vanilla DDQN. It was shown that the vectorized
frame representations are not disentangled. This could be a factor that degrades
the agents performance since the dynamic extraction part counts on disentangled
representations. A possible improvement could be made by using Variational [17]
or β-Variational Autoencoder [14], which have shown to provide disentangled
latent spaces.

Deep learning also has a tendency to show better results when a task is
trained end-to-end, which training the autoencoder concurrently with the DDQN.
This could be realized by simply updating the autoencoder every n steps with
frames sampled from the replay memory. Lange et al. [22] provide a framework
for this. Another option would be to directly connect the autoencoder to the
backpropagation of the target error. This provides the Q-learning context to the
autoencoder, which could also help the autoencoder to put more emphasis in
his representations on the actually important parts of the screen (that often are
small) and not just raw pixel values.

In general, it needs to be said that due to time constraints only one set of
hyperparameters could be tried out. Many more variations in latent space size,
number of layers, activation functions, discount factor etc. could be tried out
and could lead to improvement.

After making the MATS approach work better, it could be tested how useful
the three different parts are for transfer learning. For example the dynamics part
could be reused for another Atari task to see how well it has generalized.

7 Summary

In the first part of this work, XAI visualization were used to investigate the
training process of an Atari agent. Several findings were reported like possible
reasons for forgetting or at what stage in training an agent is able to detect
certain concepts. In the second part, it was shown how visualizations can help
to understand why in some cases, transfer learning in RL is a success and why
in some cases it is not. Lastly, the third part proposed a modular approach that
divides the task into several subtasks assigned to different parts of the architec-
ture. This architecture did not work as expected and visualization methods were
able to give hints were improvements could be made. Every part ended with a
conclusion and a perspective on possible future work.

Summarizing, XAI visualization methods have shown to be helpful in many
aspects of RL. The field of RL and ML in general will continue to grow. Used
systems will become larger, the environments will be more complex and they
will play a growing role in everyday life. Against this background, further efforts
and research in the fields of XAI are necessary to manage such complexity.
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A
Used Frameworks

The project was realized using Python 3.8.

requ i rements . txt :

matp lo t l i b ==3.3.4
keras_r l2 ==1.0.4
t f_keras_vis ==0.5.5
t en so r f l ow ==2.2.0
gym==0.18.0
opencv_python==4.5.1.48
numpy==1.20.1
Pi l l ow==8.2.0

B
Hyperparameters and Settings

The following hyperparameters and settings in Keras-RL2 were used for every
experiment.

memory= SequentialMemory ( l im i t =1000000 ,
window_length=WINDOW_LENGTH)

po l i c y = LinearAnnealedPol icy ( EpsGreedyQPolicy ( ) ,
a t t r =’eps ’ ,
value_max=1. ,
value_min=.1 ,
va lue_test =.05 ,
nb_steps=1000000)

dqn = DQNAgent(model=model ,
nb_actions=nb_actions ,
p o l i c y=po l i cy ,
memory=memory ,
p ro c e s s o r=proces sor ,
nb_steps_warmup=50000 ,
gamma=.99 ,
t r a i n_ in t e r va l =4,
de l t a_c l i p =1. ,
batch_size=32)

dqn . compi le ( opt imize r=Adam( l r =.00025) , met r i c s =[ ’mae ’ ] )

Apart from that, Tensorflow, Keras und Keras-RL2 default options were used.
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For saliency map visualizations, tf-keras-vis was used with the following
settings:

s a l i e n c y = Sa l i ency (model , c l one=False )
saliency_map = sa l i e n c y ( l o s s ,

s t a t e s ,
smooth_samples=20,
smooth_noise=0.20)


