
Bachelorarbeit
Milena Hippler

Robot Control Paradigms for reactive systems implemented in
modern C++ standards

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Milena Hippler

Robot Control Paradigms for reactive systems implemented in
modern C++ standards

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Technische Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. rer. nat. Stephan Pareigis

Zweitgutachter: Prof. Dr.-Ing. Andreas Meisel

Eingereicht am: 5. Januar 2017

Milena Hippler

Thema der Arbeit
Roboter Kontrollparadigmen für reaktive Systeme implementiert in modernen C++ Standards

Stichworte
Roboter Kontrollparadigmen, Roboter Kontrollarchitekturen, Reaktive Systeme, Robot Opera-

ting System

Kurzzusammenfassung
In diesem Dokument werden die deliberativen, reaktiven und hybriden Roboter Kontrollpara-

digmen, anhand einer oder mehrerer repräsentativen Roboter Kotrollarchitekturen, in Hinsicht

auf Qualitätsmerkmale, reaktiven Systemanforderungen, empfohlener Einsatzbereiche sowie

unterschiedlicher Implementationsansätze untersucht und miteinander in Vergleich gestellt.

Milena Hippler

Title of the paper
Robot Control Paradigms for reactive systems implemented in modern C++ standards

Keywords
Robot Control Paradigms, Robot Control Architectures, Reactive Systems, Robot Operating

System

Abstract
Within this document will be the deliberative, reactive and hybrid robot control paradigms

by reference to one or more representative robot control architecture with regard to quality

characteristics, reactive system requirements, recommended �elds of application as well as

distinct implementation approaches examined and compared to each other.

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Ambition . 1

1.3 Classi�cation . 2

1.4 Structure . 2

2 Robots and Reactive Systems 4
2.1 Robots . 4

2.1.1 Robot Sensory . 5

2.1.2 Robot Actuators . 5

2.2 Reactive Systems in Robot Control . 6

3 Robot Operating System 7
3.1 Supported Robot Platforms and Sensors by ROS Packages 7

3.2 Structure . 8

3.2.1 File System . 8

3.2.2 Computation Graph . 10

3.3 Communication . 11

3.3.1 Topics . 12

3.3.2 Services . 13

3.4 ROS Environment . 14

4 Robot Control Architectures 16

5 Deliberative Paradigm 18
5.1 Nested Hierarchical Controller Architecture (NHC) 19

5.1.1 Nested Hierarchical Controller Architecture and ROS 22

5.1.2 Analysis of the Nested Hierarchical Controller Architecture 24

5.2 NIST Real-Time Controller System Architecture (NIST RCS) 25

5.2.1 Multiple Hierarchical Layers . 28

5.2.2 NIST Real-Time Controller System Architecture and ROS 31

5.2.3 Analysis of the NIST Real-Time Controller System Architecture 33

6 Reactive Paradigm 35
6.1 Subsumption Architecture . 37

6.1.1 Subsumption Architecture Implementation Analysis 38

6.1.2 Subsumption Architecture and ROS . 43

iv

Contents

6.1.3 Analysis of the Subsumption Architecture 45

7 Hybrid Paradigm 47
7.1 Managerial Architecture - Autonomous Robot Architecture (AuRA) 50

7.1.1 Analysis of the Autonomous Robot Architecture 53

8 Conclusion 54

9 Perspective 57

v

List of Tables

3.1 Robot Categories . 8

5.1 Level Overview with Time and Sensory Information 29

vi

List of Figures

3.1 Abstract composition of the ROS �le system 9

3.2 Publisher and Subscriber Mechanism for Topics 11

3.3 Publisher and Subscriber Mechanism for Topics 12

3.4 Publisher and Subscriber Mechanism for Topics 13

3.5 Service . 13

3.6 Service Type Message . 14

5.1 SPA-Cycle . 18

5.2 SPA-Cycle with Sensor Expansion . 19

5.3 Nested Hierarchical Controller Architecture 20

5.4 Plan Component of the Nested Hierarchical Controller Architecture 21

5.5 Message Possibilities of the Plan Component 22

5.6 Communication of the Nested Hierachical Controller Architecture via Topic . 23

5.7 Communication of the Nested Hierachical Controller Architecture via Service 23

5.8 Service Type Message of Nested Hierachical Controller Architecture commu-

nication via Service . 23

5.9 NIST Real-Time Controller System Architecture 26

5.10 Abstract Hierarchical Layer Organisation of the NIST Real-Time Controller

System Architecture . 28

5.11 Reference Model of the NIST Real-Time controller Architecture 30

5.12 ROS Communication of the NIST Real-Time controller Architecture 31

6.1 Direct coupling of sense and act . 35

6.2 Sense-Act Couplings as Concurrent Behaviours 36

6.3 Arbitration Creates one Actuator Command 37

6.4 Rodney Brooks Model of Subsumption . 37

6.5 Subsumption Adjusted to Implementation . 38

6.6 Class Diagram . 39

6.7 ROS File System Structure of Subsumption Architecture 43

6.8 ROS Communication of the Subsumption Architecture 44

7.1 Sense, Plan, Act of the Hybrid Paradigm . 47

7.2 Deliberative Component Integrated into Behaviours 48

7.3 Deliberative Component Segregated from Behaviours 49

7.4 Autonomous Robot Architecture . 51

vii

Listings

6.1 Call Procedure . 40

6.2 Level registration by the Controller . 41

6.3 Arbitration . 41

6.4 Virtual Functions . 42

6.5 Level Registration . 42

viii

1 Introduction

1.1 Motivation

Nowadays it is not possible to imagine a world without robots. They facilitate the daily life in

several di�erent areas. They range from industrial, to medical, to military and to domestic areas.

Robots facilitate the domestic life in form of autonomic vacuum cleaner or gutter cleaner, they

secure human life by bomb disposal, they relieve humans by the more quali�ed and quanti�ed

use in factories, and facilitate and entertain the human life by multiple other services in various

areas. In summary the use of robots ranges a road �eld of applications.

Out of that reason it is both interesting and important to be aware of the imposed requirements

of an application and how a robot must be architectural designed to meet those. It is therefore

essential to be acquainted with basic robot paradigms, their representative architecture models

and their advantages and disadvantages concerning di�erent criteria.

For what kind of tasks is a reactive robot control architecture recommendable and when is a

deliberative control architecture suitable? Do architectures, based on the same robot control

paradigm, di�er in their advantages and disadvantages? And is the combination of both to

the hybrid robot control paradigm the catch-all ultimate solution? These questions will be

considered in this thesis as well as a detailed overview which of the huge amount of architecture

possibility is suitable for the own use-case.

1.2 Ambition

The aim of this work is to enable the reader to distinguish between the three robot control

paradigms and to identify corresponding architectures, by the knowledge of their composition

and structure. Moreover is the aim to provide a detailed analysis of the requirements of an

architecture so that the reader is capable of making fundamental decision what kind of robot

architecture is suitable for which intended use. Another ambition is to introduce the reader to

the robot operating system ROS, which is enabling a facilitate implementation by its helpful

1

1 Introduction

complex environment, so that, after the architecture decision process is completed, the reader

is able to start implementing the robot system without any greater research.

1.3 Classification

The thesis analyses the three basic robot control paradigms, which are based on the components

sense, plan and act.

The deliberative robot control paradigm describes a hierarchical sense-plan-act cycle. This

paradigm will be represented by the nested hierarchical controller architecture developed

by Meystel [Meystel] and by the NIST real-time controller system architecture developed by

Albus [Albus (b), Albus (a), Albus (c)]. Both Meystels and Albus’ architecture designs will be

analysed and compared to each other.

The reactive robot control paradigm describes a tight sense-act coupling and disregarded the

plan component. This paradigm will be represented by Brooks’ subsumption architecture

[Brooks (b), Brooks (a)]. Also Brooks architecture will be analysed regarding speci�c criteria.

Moreover will the subsumption architecture be adjusted and implemented in modern C++

standards.

The last robot control paradigm is the hybrid paradigm, which describes also a tight sense-

act coupling but also considers the plan component as a part of the paradigm. Therfroe a

combination of deliberative and reactive paradigm. The hybrid paradigm is represented by

the autonomous robot control architecture developed by Arkin [Arkin (a), Arkin (b)]. Arkins

architecture will also be analysed according to speci�c criteria. In more detail how both

including paradigms are combinable and how their single advantages and disadvantages a�ect

the combination.

Each architecture will be compared to the requirements of a reactive system and evaluated

whether they accomplish them and why. Furthermore all of the previous mentioned architecture

will be linked to the robot operating system and their structure and communication discussed.

1.4 Structure

The structure of this thesis is divided into three main parts.

The �rst part introduces to the the topic of this thesis in chapter 1 and provides an general

overview of the basic knowledge about robotics and reactive systems in chapter 2, about the

robot operating system ROS in chapter 3 and about robot control architectures in chapter 4.

The second part represents the main part of the thesis, the three di�erent robot control

2

1 Introduction

paradigms. Each paradigm will be �rst introduced by basic knowledge and its characteristics.

For each paradigm will be at least one representative architecture introduced and analysed

in respect of the main software principles for architecture evacuations. Moreover will be the

communication and the structure decisions for an possible implementation of the speci�c

architecture in the robot operating system discussed.

Chapter 5 will be concerned about the deliberative robot control paradigm which will be

represented by the nested hierarchical controller architecture (NHC) and the NIST real-time

controller architecture. In chapter 6 will be the reactive robot control paradigm introduced

and represented by Rodney Brooks’ subsumption architecture. This chapter will additionally

contain, besides the usage of ROS communication and an architectural analysis, an implemen-

tation example of the subsumption architecture. In chapter 7 will be the hybrid robot control

paradigm introduced and represented by an managerial architecture, the autonomous robot

architecture.

The last part of this thesis consists of the chapters 8 and 9 and will provide a summary and a ul-

timate comparison of the analysed architectures and therefore control paradigms. Furthermore

will be a perspective provided for prospective works.

3

2 Robots and Reactive Systems

This chapter provides the de�nition of a robot and on which kinds of robots this works is

concentrated. Furthermore it introduces reactive systems and combines the requirements of a

reactive system with robot control architectures and outlines what reactivity means in robotic

systems.

2.1 Robots

The question how to de�ne a robot di�ers a lot depending on the sources and orientation. this

work specializes on intelligent autonomous mobile robots.

Murphy de�ned an intelligent robot as "an intelligent mechanical creature which can function

autonomously" [cf. Murphy]. The "mechanical creature" implies that a robot consists of

a combination of mechanical parts, which also includes that a robot consists of actuators

which convert electrical signals into mechanical movements (see subsection 2.1.2). "Intelligent"

describes the ability of a robot to process with a certain reason and well considered decisions

and is able to adapt and react to situations instead of processing in a "repetitive way" [cf.

Murphy]. "Autonomously" implies that a robot is able to process without support of human

beings and that the robot is able to react to environmental condition by itself. This also implies

the sensory of a robot which observe the environment (see subsection 2.1.1).

Arkins de�nition of a robot if following "a machine that is able to extract information from its

environment and use knowledge about its world to move safely in a meaningful and purposeful

manner" [cf.Arkin (b)]. This de�nition is also implying that it gathers data via sensory from

the environment and is able to use this knowledge to move by its actuators autonomously

through its environment.

In summary a robot is a machine that senses its environment, plans intelligent and acts

autonomously. In chapter 5, 6 and 7 will be the function and their combination analysed.

The sensing is based on sensors, which are de�ned below in subsection 2.1.1 and the action is

based on actuators, which are de�ned in 2.1.2.

4

2 Robots and Reactive Systems

2.1.1 Robot Sensory

A robot consists of a myriad number of various sensors. Most sensors are comparable to animal

or even human senses. The aim of sensors is to achieve a simultaneous confrontation to the

world and itself like biological creatures do. In some areas sensors are even more e�ective,

but in most of the cases sensors still lack in time management and reactivity. Robots need

sensors to receive information from the external environment around it and also to monitor

its internal environment.

Those two di�erent types are called: exteroceptive and proprioceptive sensors.

The exteroceptive sensors obtain information about the robots external environment. They are

comparable to the biological �ve senses: vision, audition, gustation, olfaction and somatosen-

sation. The most important robot senses are vision for example for wandering around and

ful�lling tasks and also audition for example for speech recognition. For the vision includes a

robot system usually a camera and robot vision software designed for tasks as detecting edges,

enhancing contrasts and most important for regular robot tasks recognizing objects. In this

category also includes obstacle detectors. Those operate using ultrasound or lasers, they emit

a signal and receive the echo from an object. Audition sensors detect sound are essentially

microphones with complex signal-processing capability. Moreover are exteroceptive sensors,

sensors which measure the environments condition like temperature, humidity, radiation,

pressure, etcetera. A sophisticated robot system is constituted of a cooperation with these

sensors.

The proprioceptive sensors monitor the robots internal environment. Internal environment

includes the monitoring of the robots extremities like angle of a leg or an arm. This observation

is quite similar to biological creatures. Proprioceptive sensors that di�er from them are for

example monitoring the robots battery voltage, since a biological system is not composed of

those energy input. An other example is the observation of the robots wheel rotation, since

wheels are no part in biological organisms. The aim of proprioceptive sensor is to control the

robots inner states to identify and correct faults.

2.1.2 Robot Actuators

Robots are also composed of multiple actuators which enable the robots to interact physically

with their environment. Actuators convert energy into physical motion. They need as input

a control signal to execute an action. Moreover they need power to function. The state of

the control signal determines the type of the actuators. The signal can be hydraulic, pneu-

matic, thermal, magnetic, mechanical or electrical (for information [Actuators2015]). In mobile

5

2 Robots and Reactive Systems

robotics the electrical actuators are the most common actuators the electric motors. Electric

motors provide the locomotion by powering wheels or legs and provide the manipulation by

actuating robot arms.

2.2 Reactive Systems in Robot Control

Since a numerous of robots are operating in most cases in an open world, which is changing

dynamically, it is important to assure the reactivity. Wieringa [cf. Wieringa] described a

reactive system as "a system that, when switched on, is able to create desired e�ects in its

environment". The nowadays aim of a robotic system is also to create e�ects in the environment

be it intelligent planned or reactive acted e�ects.

The reactive manifesto [cf. Boner u. a.] imposes �owing requirements :

• Responsiveness:

The response to the external stimuli shall take place as immediate as possible to ensure

real-time.

• Resilience:

The system shall be robust against internal and external failures.

• Elasticity:

The system shall be able to process reliable in case of varying stimuli.

• Communication:

The communication shall be based on asynchronous messages between the components.

A reactive system shall continuously interact with its environment in a stimuli-response

process. The stimuli is the in robotics the sensory input, it occurs when the environment

changes. The response process is equivalent to the act component of a robotic system. Reactive

systems are often structured in a number of processes which will be processed concurrently.

This is similar to the robots behaviours which are also concurrent processed and de�nes the

reaction to the input in real-time. The behaviours and the real-time response as well as the

mentioned requirements are, depending on the architecture, usually realised in the reactive

(see chapter 6) and in the hybrid paradigms(see chapter 7). The real-time requirement is also

partially realised in deliberative architectures (see chapter 5).

6

3 Robot Operating System

This chapter introduces to the ROS - Robot Operating System, which simpli�es the software

development of modern robot systems by its collection of software frameworks. This collection

consists of tools, libraries, hardware abstractions, device drivers, visualisations, communica-

tions, packages and conventions. Therefore its advantage is that it provides lots of infrasructure,

tools and thereby capabilities.

ROS is an open source meta - operating system for robots. ROS requires an operating system.

Linux is recommended. Windows and MacOS are not supported very well at this time. ROS is

not a real-time framework, although it is possible to connect real-time component with each

other. It supports programming languages like C++, Python, Lisp and Java (where C++ and

Python are the most supported ones).

By the use of ROS it should be kept in mind, that it is not recommended for system with high

demands on security or scalability, since those are not the �rst class concerns of ROS yet, in

�rst case it is about an easy use of tools and algorithms.

This chapter solely describes the basics like the structure and system environment of ROS. In

the following chapters, the subsections 5.1.1, 5.2.2 and 6.1.2 are speci�c use cases concerning

the communication implementation and also �le system in ROS explained.

3.1 Supported Robot Platforms and Sensors by ROS Packages

ROS is used by multiple kind of robots. The peripheries of a robot system and therefore also

for ROS are hardware and multiple sensors.

ROS supports the main categories of robotics which are listed in table 3.1.

The by ROS packages supported sensors are 1D and 2D range �nders (for example distance

calculation), 3D sensors for also range calculation, RGB-D cameras and cameras in general.

Moreover motion capturing and position estimation sensors which are as well as the before

mentioned sensors mainly for the localisation and locomotion of the robot system and its

environment necessary. Also Audio Speech Recognition sensors are supported by packages to

ensure communication interfaces for mostly social robots. Environmental sensor which are

used for measuring environmental conditions such as temperature, gas, pressure and humidity

7

3 Robot Operating System

Category Description
Mobile manipulators Robot system compound of a robot arm and a autonomous

base.

Mobile robots Capable of automatic locomotion

Manipulators Enables the physical interaction with the environment.

It is the movable part of the robot, which does the mechanical

work of the robot. The kind of robots which are commonly

associated with industrial robots.

Autonomous cars Autonomous driving vehicles.

Social robots An autonomous robot which communicates and is based on

behaviours and rules according to its role.

Humanoid A visually human resembling robot

UAVs Unmanned Aerial Vehicles.

AUVs Unmanned Underwater Vehicles.

Table 3.1: Robot Categories

are also supported. Moreover power supply and RFID sensors and other sensor interfaces

(view a full list at ROSwikiSensors2016) are supported.

In conclusion are the most basic robots and sensors supported by packages. If not there is the

possibility to add it or to ask the community which extends ROS permanently.

3.2 Structure

ROS is composed of three basic conception layers. Those layers are the �le system (see

subsection 3.2.1), the computation graph (see subsection 3.2.2) and the community. Where the

community represents the software and information sharing with other developer and is not

relevant for this work, thereby not further described. For more information about the ROS

community see [ROSwikiCommunity2016].

3.2.1 File System

The ROS �le system consists of stacks, packages, message types and service types. Moreover

manifests for stacks and manifests for the packages. These manifests comprise meta data,

license informations and dependencies.

Stacks are composed of multiple packages which have the same functionality and thematic.

Stacks can have dependencies to other stacks. Therefore they create modularity by condensing

functionality and connection to other functionalities, which makes the �le system clearer.

8

3 Robot Operating System

The packages shall provide a speci�c functionality. This functionality has to be reusable.

Due to the aim of re-usability the packages must be as general as possible so that the same

mechanism is usable for more scenarios and applications. Packages include libraries, data sets,

con�guration �les and more particularly the nodes which are containing the main processes

and will be elucidated in section 3.2.2. According to this the packages represent the software

organisation of ROS and the software processes.

Message types and service types are also included in the �le system and are located in the

respective package they are used in. Both represent a data structure for the communication.

The message types are for the topic-based communication and the service type for the service-

based communication which will be explained in section 3.3.

Figure 3.1: Abstract composition of the ROS �le system

Summarized with regard to functionality, execution is the main structure as visible in �g. 3.1.

The Stack includes multiple packages (in this example two packages) and each package includes

a various number of nodes. This structure should be kept in mind for the visualizations in the

following chapters, since their composition is optimized away due to further abstraction.

9

3 Robot Operating System

3.2.2 Computation Graph

The computation graph represents the interaction of all components. The ROS wikis de�nition

of the computation graph is that it is a peer-to-peer network of ROS processes, which ful�l a

task together [cf. ROSwikiGraph2014].

Since ROS was developed for service robots with high complexity requirements, an e�cient

way for the data switching had to be found. Commonly robot networks are designed, that

multiple computers in the robot itself are connected via Ethernet and transfer data via wireless

LAN to high-performance data processors, where complex computations like image processing

and speech recognition are performed. This wireless LAN connection a�ects the performance

of the system and is the bottle-neck of it. By using the in the de�nition mentioned peer-to-peer

architecture with input bu�er and output bu�er this deceleration can be prevented. For ROS

are sorely mechanism for processes necessary for �nding their communication partner while

runtime.

The computation graph consists of components which represent the handling of the system

and also of the systems communication. Those components are the nodes (see subsection

3.2.2), messages (see subsection 3.2.2), topics (see subsection 3.3.1), services (see subsection

3.3.2), bags (see subsection 3.2.2) and the master (see subsection 3.2.2).

The communication between these components or by these components are demonstrated and

explained in section 3.3.

Nodes

The ROS nodes are the executing instance which are basically processes which do a speci�c

computation / functionality. Nodes can be related to a sensor, a motor or any sort of algorithm.

In a robot system multiple nodes exist which are independent from each other. These inde-

pendent nodes are able to work together and have two options of communication which are

speci�ed in section 3.3. The independent but cooperating nodes represent the modularity of

ROS. Resources (node) can be easily replaced or changed without a�ecting the whole system.

Each node has to register itself to the master (see information about the master at 3.2.2).

Master

The master is a server that tracks the network addresses of all nodes and the other information

like parameters. It manages the registration of the nodes. It also provides the service that

a node can �nd other nodes because of the registration service. Thereby each node knows

every other node because of the master and through the master. The master saves which

10

3 Robot Operating System

node publishes a topic and which topics it subscribes (for more information about topics

see section 3.3), therefore it has information about the communication and about the nodes.

Acoording to this the master also provides a service for �nding communication partners of

the nodes while run-time, since it has every node in the system registered. It also informs

the subscribers about other nodes publishing on the same topic. In conclusion it means, that

without a master there will not be any communication possible. When running a node (with

$rosrun [package_name] [node_name]), the node must know about the address of the master.

Therefore the �rst thing to do in ROS before starting to run the nodes, is to start the master by

the command roscore. The IP-address of the master is hard coded in the system and can be

used by the constant ROS_MASTER_URI .

The concept of the master is shown in following �gure 3.2 which represent an example of

the master concept by a topic communication. Node0 informs the master on which topic it

is publishing and its IP-address. Node1 requests subscription to that speci�c topic and the

master provides it the information about which node is publishing on it.

Figure 3.2: Publisher and Subscriber Mechanism for Topics

Bags

Bags store and load ROS messages. For example it is possible to save sensor data information

of a system. The sense in reloading those information is that it enables developers to debug

the system retrospectively. Also analysis on original data are possible and realised by bags.

3.3 Communication

Nodes communicate through messages. A message is a data structure which includes the

standard data types of the message parameters. Also arrays are supported. Messages can also

11

3 Robot Operating System

contain any number of nested structures.

ROS o�ers two di�erent kinds of communication. A synchronous communication is realized

by services. Services allow bidirectional communication between two nodes. The complement

of the synchronous communication are the communication by use of topics. Topics represent

the asynchronous communication and realises a many-to-many relation between multiple

nodes. It is also based on a unidirectional communication. All in one can a node use both topic

and service for communication with other nodes.

3.3.1 Topics

Figure 3.3: Publisher and Subscriber Mechanism for Topics

Topics are used by nodes for information sharing. They represent the asynchronous commu-

nication in ROS. The communication is unidirectional which means that the writer node and

the reader node do not need to know about each other. The topic communication is comparable

with the communication via memory cells.

This mechanism is called publisher and subscriber system. A node publishes information to a

topic (see �g. 3.3 left side of Topic_name). The topic can be identi�ed by its name and the

master saves the information which node is the publisher for this topic. If another node is

interested in this topic and its messages, it subscribes to it via the master who saves also the

subscriber of the topic (see �g. 3.3 right side of Topic_name).

The asynchrony causes that the subscriber can read the published information whenever it

wants.

As in �g. 3.4 visible one or more nodes can publish information to a topic (see Node0 and

Node1 publish to Topic_name1). Also visible is that one or more nodes can subscribe to those

information (see Topic_name1 subscribed by Node2 and Node3). Moreover nodes can also

function not only as a publisher but also as a subscriber at the same time (see �g. 3.4 Node4

publishes and subscribes to Topic_name0).

In conclusion one node can publish multiple topics and subscribe multiple topics at the same

time, this is called the asynchronous many-to-many communication.

12

3 Robot Operating System

Figure 3.4: Publisher and Subscriber Mechanism for Topics

3.3.2 Services

As distinguished from the asynchronous many-to-many topics, a service o�er a direct communi-

cation between two nodes. This bidirectional communication is synchronous. It is a request and

response interaction between two nodes and is comparable to the remote procedure call. One

node o�ers a service, which is identi�able by its name (see �g. 3.5 Node0 and Service_name).

The node which is interested in the service sends a request and waits for a response from

the service o�ering node and then receives its response (see �g. 3.5Node1 andService_name).

Figure 3.5: Service

The structure of the request and response messages is de�ned in the already mentioned ser-

vice types (svr-�le) (see. 3.2.1). For example a node wants the other node to solve a calculation

by corresponding via a service. The svr-�le would look like in �g. 3.6 where the �rst two lines

represent the request message and the line after the three dashes (last line in �gure) represents

the response message type.

13

3 Robot Operating System

Figure 3.6: Service Type Message

A client node requests the execution of an additional function and transmits the parameters

via the message which shall be executed and the server node responds by using the result

parameter.

3.4 ROS Environment

ROS was implemented in a micro-kernel design to reach high stability and minor complexity.

Therefore ROS does support a variety number of tools which are responsible for the execution

of multiple components of ROS.

In the following are some most used tools of ROS. These tools are supporting mostly di�erent

kinds of visualisation which simplify the use of ROS. Gazebo is a 3D simulation environment.

It simulates robots and their interaction with their environment by physical processes. This

simulated sensor data, robot states and objects in the environment are published by ROS. This

published data can be received and used by nodes. Gazebo o�ers a graphical user interface

which enables a visual monitoring and interaction with the simulated environment. the

complement for a 2D simulator is the tool Stage. The tool Rviz is also a 3D visualisation

system, but in di�erence to Gazebo it has no motor, it visualizes the view of the robot. ROS

supports OpenCV which is used for image processing.

ROS supports QT. QT is a library for cross-platform programming of graphical user interfaces

and is named rqt in ROS. It is mainly used for the depiction of the peer-to-peer topology. This

is provided by the rqt_graph package. It allows to see the connection between the nodes.

Another visualisation provides the rqt_plot which enables a live plotting of published data to

ROS topics.

Moreover the in section 3.2.2 introduced bag has a visualisation package named Rqt_bag

which enables to see the recorded data in the bag �les and o�ers multiple editing tools.

Besides visualisation ROS supports several command line tools. That would be a navigation

through the packages (roscd), listing of the transmitted data via topics (rostopic) and via

services (rosservice) and information about the nodes (rosnode). Also o�ers command lines

14

3 Robot Operating System

for �le system installing and multiple command lines for interaction and debugging the running

system.

15

4 Robot Control Architectures

An architecture is based on several strategical decisions about the organisation of a system. It is

composed of multiple components and represents the relationship between those components

and how as well as about what they communicate with each other. An architecture de�nes

structure of the system and may also de�ne the structure of its sub-systems, its components.

Moreover is an architecture is a method of implementing a robot control paradigm.

The Oxford Dictionary [cf. OxfordDict] de�nes a paradigm as follows: "A typical example or

pattern of something; a pattern or model". A paradigm represents therefore an architecture

since it is used to structure element (here components) in a certain way.

Murphy [cf. Murphy] described that control paradigms are based on the relationship between

the three basic components: sense, plan and act. The way of how they are organized represents

the speci�c paradigm. A speci�c paradigm can be represented by various architectures as long

as they keep the paradigms structure. In terms of paradigms for robot control we speak of

three basic paradigms which di�er in the disposal of the components sense. plan and act.

The �rst robot control paradigm is the deliberative or also called hierarchical paradigm (see chap-

ter 5), which focuses on automated reasoning and knowledge representation. This paradigm is

represented by Meystels [cf. Meystel] nested hierachical contoller architecture (NHC) and by

Albus [cf. Albus (a)] NIST real-time controller system architecture (NIST RCS).

The second paradigm for robot control is called reactive or behavioural paradigm. In oppo-

sition to the deliberative paradigm it does not plan its actions, it reacts to conditions of the

environment and thereby pursues to act like a reactive system (see explanation of the de�nition

of reactive systems introduced in chapter 6).

Now there’s a robot control paradigm which plans next steps and one which reacts. The result

of the combination of these two robot control paradigms is the third paradigm of robot control,

the hybrid. A hybrid robot control paradigm is able to plan steps automatically, but it is also

reactive if necessary. Modern robot architectures are based on the concept of hybrid paradigms.

This paradigm will be introduced in chapter 7.

The evaluation and analysis of these paradigms and their representative architectures is based

on several system engineering principles. Principles or criteria such as the robustness of the

16

4 Robot Control Architectures

architecture. Is the architecture robust enough and especially secure enough to operate in

an open world and how it will be analysed if the architecture was ever successfully used

for robotic systems and especially mobile robotic systems. Another aspect is the support

for modularity. Is the system decomposed by functionality and is therefore maintainability

ensured. Is the architecture expandable by new components and how does is react to removal

of components. Moreover is the portability an analysed aspect. Is it possible to use the system

for other robots, would the code be re-usable or is an amount of code re-writing necessary to

port it to another robot. The following chapters will analyse these issues and give an overview

of which architecture suitable for speci�c use cases and environmental conditions.

17

5 Deliberative Paradigm

The deliberative paradigm is based on the classical sense-plan-act cycle (see �g. 5.1). It is also

called hierarchical paradigm, because of the hierarchical order of the instances.

Figure 5.1: SPA-Cycle

The basic model contains three components: sense, plan and act.

The concept is that the robot senses the world, updates its world model by the sensed data,

then generates a plan to ful�l a speci�c task and �nally executes the plan. This process will be

repeated until the task is accomplished.

The sense component receives data from the sensors. According to this data it modi�es its

world model. The world model represents the robot’s internal global map of the environment, it

gathers all sensing data. This map can be either given by default (in case of a static environment)

or created by algorithms. Since robots, except for industrial ones in a production plant, do

have a dynamic environment nowadays, we assume that the robot has to explore the world

itself. This leads to a slightly di�erent model of the SPA-cycle which is shown in �gure 5.2.

Below in �gure 5.2 the sense component is split into two parts: Perception and map-building/

localisation. Perception is the part where the robot processes the sensor data and merges it

with the update data from the last cycle iteration. This dataset in�uences the localisation and

map-building instance. This instance locates by the data the robot in its world map and updates

the world model. Localisation and map-building contain the algorithms. The second SPA-cycle

component is the plan component. As input it receives the current world model. It contains the

strategy of generating the less expensive way to ful�l a given task. It is so to speak a problem

solving component. Planning is the part with the most computational expense. The more

complex a world model is or gets, the longer the generation of a plan will take. That is because

18

5 Deliberative Paradigm

Figure 5.2: SPA-Cycle with Sensor Expansion

it tries to �nd the less expensive possible plan in the whole world model, like for example the

shortest way to an object (Dijkstra algorithm [(Cormen u. a.)]).

The output of plan are directives for the act component which is the last one in the cycle. It

actuates the actuators to execute the computed plan. After executing the plan the process

starts again. This will be repeated until a task is ful�lled.

5.1 Nested Hierarchical Controller Architecture (NHC)

The nested hierarchical controller is one of the best known architectures which represent

the deliberative paradigm. It was developed by Meystel [cf. Meystel]. Three hierarchical

ordered components sense, plan and act compose the nested hierarchical controller architecture.

Therefore it keeps the sense-plan-act procedure of the paradigm. The major contribution of the

architecture of the nested hierarchical controller is the decomposition of the plan component

into three di�erent functionalities.

As visible in the yellow box in �gure 5.3 the sense component contains the world model. The

world model receives all sensor data of the environment from the various sensors, combines

them. The world model creates according to those data an internal map on which the planning

and therefore the actions are based on. Because of that dependency it is important that the

world model is always up to date and has no wrong information about the environment. After

each execution of an action the sensors sense again and the world model gets updated. The

world model can also contain a knowledge base of the world, for example a basic map, and

then complement the knowledge by the sensor and update data.

The procedure of the plan component (see the blue box in �g. 5.3) is parted into three functions:

the Mission planner, the navigator and the pilot. Each function is connected to the world

19

5 Deliberative Paradigm

Figure 5.3: Nested Hierarchical Controller Architecture

model, therefore each instance is able to work on the current world model data.

The mission planner receives a mission or it generates the mission itself. The generation of

the mission happens if a new mission occurs. The given mission will be translated into terms

which are understandable for the other functions. The mission planner uses the world models

map to locate the robot and to locate the goal (see in �g. 5.4 the R for the robot location and

the G for the goal location).

The mission planner passes these location information to the navigator (see �g. 5.4 positions).

The navigators task is to generate a path from the robots current position to the position of the

goal. This path can also be a number of segments of the whole path to achieve a sub-goal if the

goal is not reachable in one straight calculation (for example in case it needs to avoid objects

and therefore change directions). The generated path is handed to the pilot (see �g. 5.4 path).

The pilot generates which action the robot needs to execute the planned path or path segment

by the received plan(for example turn left / right, move one meter forward). In �gure 5.4 the

path segment from the robot R to the sub-goal SG is visible, which will be executed �rst

before reaching the main goal G.

The act component (see the green box in �g. 5.3) includes the low-level controller and the

diverse actuators. The action commands generated by the pilot that let the robot execute the

goal or a sub-goal, are handed to the low-level-controller which translates them into actuator

20

5 Deliberative Paradigm

control signals and puts the actuators in action by these signals. The actuator and therefore

the robot execute the plan.

Figure 5.4: Plan Component of the Nested Hierarchical Controller Architecture

After that the sense component will be executed again and the world model gets updated.

Unlike in �gure 5.2 the whole planning process will not be repeated. The pilot takes the updated

world model and checks if the goal or the sub-goal is accomplished. This check will lead to

three possible results. The �rst result is visible in �gure 5.5 a), that means that the robot (see R)

has reached the goal (see G). In this case the pilot informs the navigator about the success and

reverse forwarding is the mission planner informed by the navigator (see �g 5.3 cmd_result).

In case b) the goal was not reached, but a sub-goal (see SG). The pilot needs now a new path

from the reached sub-goal to the main goal or to another sub-goal, therefore the pilot informs

the navigator that a new path is required. In the last case c) the robot encountered an obstacle

(see O) and cannot completely execute the planned path. To receive an alternative path to avoid

the obstacle, the pilot informs the navigator about the obstacle, the navigator uses the updated

world model and includes the obstacle in its calculations and generates a new path to the goal or

sub-goal with avoidance of the obstacle and hands it back to the pilot. In either case b) and c) the

mission planner is not included in the path planning process, because the mission remains the

same. The concept of reverse communication between the functions saves a lot of computation

21

5 Deliberative Paradigm

time since the mission planner does not need to plan the mission again although its still current.

Figure 5.5: Message Possibilities of the Plan Component

Especially case c) implies that the nested hierarchical controller architecture functions con-

ditional in a dynamic world, since the pilot observes the world model directly after giving the

execution command to the actuators and while the world model gets updated by the sensors.

It is not very reactive, but still the system is able to react to some events in the world.

The decomposition of the plan component into the functionalities of mission planning, navi-

gating and piloting is inherently hierarchical in intelligence and scope. The mission planner

has the highest scope and abstracted view since it is aware of the mission. The navigator has a

more decreased scope than the mission planner, but has the details increased. The pilot has

the most detailed view but the most decreased scope.

5.1.1 Nested Hierarchical Controller Architecture and ROS

To suggest an implementation of the nested hierarchical controller architecture in ROS the

nodes must be identi�ed �rst. Each of these components world model, mission planner, naviga-

tor, pilot and low-level controller are represented as single node, because the all de�ne a speci�c

functional process. The mission planner, navigator and pilot node need information from the

world model about the sensed environment. It must be decided whether a communication via

service (see de�nition 3.3.2) or via topic (see de�nition 3.3.1)is more useful.

It is more useful to let the world model publish its information to a topic so that each node

is able to extract the information when they need it. Moreover is a topic an unidirectional

communication and since the world model only gives information and does not receive any,

it is suitable to use this communication as a topic. That the topic allows an asynchronous

request is the main advantage for the use of it in this case, the world model is able whenever

it receives new data, to publish them to the topic and the plan component nodes are able to

subscribe to the environment data topic and can retrieve the necessary information about it

22

5 Deliberative Paradigm

for the planning (see �g. 5.6).

Figure 5.6: Communication of the Nested Hierachical Controller Architecture via Topic

The other is communication within the plan component between the mission planner, navi-

gator and pilot will be realised by a service between the mission planner node and the navigator

node and between the navigator node and the pilot node (see �g. 5.7). It is recommendable to

use a service, because it o�ers a synchronized bidirectional communication between nodes.

Such a communication type is needed for example when the pilot receives the feedback and

has the result to the executed path that an obstacle appeared. The navigator must be informed

about that result very fast and has to send a path for the avoidance as response back to the

pilot in time. Due to the connection establishment it can be assured that the request will be

processed immediately. The pilot for example requests a new path for obstacle avoidance with

the "obstacle" parameter which is a string and includes the result and the navigator responses

by sending the new path segment for example by giving it two-dimensional coordinates (see

service type message in �g. 5.8).

Figure 5.7: Communication of the Nested Hierachical Controller Architecture via Service

Figure 5.8: Service Type Message of Nested Hierachical Controller Architecture communication

via Service

23

5 Deliberative Paradigm

5.1.2 Analysis of the Nested Hierarchical Controller Architecture

The use of the nested hierarchical controller architecture is recommended if the robot concen-

trates exclusively on navigation task. The decomposition of the plan component induces a lot

of advantages, but also the disadvantage of this decomposition being exclusively suitable for

navigation tasks. Because of the strong binding of each functionality in the plan component to

localisation and path �nding solutions, the component is not able to solve more complex tasks

as for example stacking boxes. Or as Murphy [cf. (Murphy)] describes the specialisation on

navigation tasks: "the division of responsibilities seems less helpful, or clear, for tasks such

as picking up a box, rather than just moving over it". Those use cases would involve more

functions in the plan component which would also have to be combined with the navigation

functions. To create that a lot of work would be necessary and the result architecture would

not be e�cient enough in comparison to the next introduced NIST real-time controller system

in section 5.2 which is able to accomplish more goals than navigation.

Parts of the nested hierarchical controller architecture are very often included into other

architectures as either hierarchical or hybrid. The just mentioned NIST real-time controller

architecture is conceptual based on this architecture by taking advantages of the knowledge

base and the idea of plan decomposition into subtasks. Moreover the nested hierarchical

controller architecture has been used for many application like vehicle guidance. Also this

architecture is used for in game and computer simulation development for virtual agents and

non-player characters (NPCs).

One of the mentioned advantages of the decomposition of the plan component is that it causes

modularity since it is partitioned by functionality. The mission planner is responsible for

the mission and localisation, the navigator for generating a plan for the path and the pilot to

generate a actions for the received plan. This modularity increases also the maintainability,

since these parts are easily to identify in case of malfunction and to be replaced or repaired.

Speaking of maintainability leads to question the robustness of this architecture. The nested

hierarchical controller architecture is not primary focused on robustness. The only feedback it

receives is by the sensors which observe the process of execution the plan by the actuators.

The architecture has no integrated previous simulation to ensure the robustness of a plan or to

be speci�c a path. On the other hand the architecture enables the robot to react to the sensory

input without rerunning the whole plan component. For example if suddenly an object occurs

along the robots path segment which is already in progress, the sensors sense the object and

the pilot receives the information and requests a new plan from the navigator to avoid the

obstacle. This process still takes some time, but is a closer step to reactivity, since the mission

planner is not rerun and the pilot gets the feedback of the action in �rst place. Murphy [cf.

24

5 Deliberative Paradigm

(Murphy)] described this as an interleave of the plan and the act component.

A last point which should be discussed is the portability of this architecture. Since this architec-

ture is exclusively focussed on navigation tasks the reuse of the plan component code becomes

more simply, because the plan a path principle persists constant, sorely the environment

changes. Therefore must the knowledge base be rewritten to hand the world model beside

the sensing additional information about the environment. Due to the lack of complexity

portability is ensured.

5.2 NIST Real-Time Controller System Architecture (NIST RCS)

NIST stands for National Institute of Standards and Technology, this is where Albus developed

the real-time controller system architecture ([Albus (c)]). Murphy described Albus’ aim to

develop an architecture "to serve as a guide for manufacturers who wanted to add more

intelligent to their robots" [cf. (Murphy)]. This architecture was also adapted to a television

version called NASREM, which will not be further mentioned in this work (for more information

about NASREM see [Albus u. a.]). The real-time controller system is similar to the in section

5.1 discussed nested hierarchical controller architecture, since it uses some parts of it in its

design. The main di�erence between these architecture is that the real-time controller system

introduces a preprocessing step between the sensors and the world model. The architecture

consists of four basic processing modules: the sensory processing module (SP), the world model

module (WM), the value judgement module (VJ) and the behaviour generation module (BG).

Sensory processing Module

The sensory processing module receives the raw data from the sensors. Instead of directly

fusion these data and integrate it into the world model the sensory processing module processes

the sensor data by di�erent algorithm depending on the area of application, such as �ltering,

masking, di�erencing, correlation, matching and pattern recognition algorithms.

The sensory processing module represents the sense component of the hierarchical sense-plan-

act cycle (see �gure 5.1), since it is responsible for the manipulation of the sensed data.

The output of the sensory processing is passed to the world model module which fusions the

received sensor data into its knowledge database.

World Model Module and Knowledge Database

The knowledge database is included in the world model. It stores and maintains all necessary

information about the environment and the world model retrieves the ones it needs in a

25

5 Deliberative Paradigm

Figure 5.9: NIST Real-Time Controller System Architecture

speci�c scenario. That kins of information can be for example in form of images, maps, entities,

states or attributes. On base of the knowledge database, the world model simulates the by the

behaviour generation module proposed plan and sends the result of these simulations to the

value judgement module. Moreover the world model generates predictions about the results

and passes them to the sensory processing module which considers it in its algorithms. Because

of the interaction between the sensory processing module and the world model module a

variety of �ltered and situation based data can be generated, which makes the process more

e�cient. In summary the world model functions as simulator and predictor and is the center

of the architecture. This world model concept is partly similar to the world model of the

nested hierarchical controller architecture, it also corresponds with a knowledge base and

fusions it with the sensor data and acts as the base for the planning component. The di�erence

is that this world model is more distinct and is able to simulate results and repercussions.

Moreover is a robot with the real-time controller system, as distinguished from the nested

hierarchical controller architecture, able to do more tasks than navigation, therefore denotes

the data collection a complex diversity.

The world model module can be classi�ed either as part of the sense component of the sense-

plan-act cycle (see �gure 5.1), because of the knowledge database or as plan component, since

it participates at the planning process by simulating the proposed plan.

26

5 Deliberative Paradigm

The world model module passes the plan results of its simulation to the value judgement

module as already mentioned before.

Value Judgement Module

This module judges the simulation results by computing criteria like costs, risks and bene�ts.

The value judgement module is able to evaluate the situation which it directs to the world

model and which is able to consider those evaluation especially in its prediction for the

sensory processing module. Moreover the value judger passes the evaluated plan back to the

behaviour generator which will analyse its proposed plan by the evaluation information. To

that e�ect facilitates the value judgement the determination of a �nal plan for the execution

by its estimation. Due to this procedure the architecture is able to discover the most e�cient

possible plan. This component is not comparable to the nested hierarchical controller since

that architecture does not contain a cost estimation in this discrete form.

The value judgement module is classi�ed as part of the plan component in the standard

hierarchical paradigm diagram (see �gure 5.1).

Behaviour Generation Module

The last of the basic processing module is the behaviour generation module. Note that in Albus’

earlier architecture designs and therefore papers this module was called "Task Decomposition"

function. This function is still included as a sub-function of the behaviour generation module.

Beside the task decomposition, which includes the planner, the behaviour generator contains

the job assignment and the executor.

The behaviour generator module receives information about the relevant state of the envi-

ronment by the world model. It also receives a command input. The command input can

be a task or a goal which shall be achieved. The job assigner is the function which receives

the command and passes it to the task planner function. The behaviour generator is able to

decompose a task into several sub-tasks to generate recursively a plan for accomplishing the

task. Therefore the planner function generates a set of possible plans. This is the part where

the world model and especially the value judger take action, because the behaviour generator

passes a tentative plan to them (to the world model which passes it to the value judger) to

evaluate the best possible plan according to speci�c criteria. It receives the cost evaluation

of the plan by the value judger. According to this evaluation the planner can choose the best

suitable plan for execution. If the plan is chosen the planner will lead it to the executor which

is equivalent to the low-level controller of the nested hierarchical controller architecture (see

section 5.1). In summary the behaviour generator decides the plan based on the received task

27

5 Deliberative Paradigm

commands and based on the current state of the environment.

The behaviour generation module represents the plan component of the hierarchical sense-

plan-act cycle (see �gure 5.1), since its highest responsibility is to generate a plan to accomplish

an input command. The executor function represents the act component since it translates the

given plan into actuator commands and passes those to the actuators.

5.2.1 Multiple Hierarchical Layers

The basic modules and their interoperation were explained in the previous sections. This

knowledge is necessary in this section, in which the architecture becomes more complex by

layering these components hierarchically. The architecture is expandable by typically up to six

types of levels which all represent a certain functionality and which di�er in many criteria

such as time, detail, spatiality and scope. The levels are hierarchically ordered. A level consists

of a number of nodes which consist of sensory processing, value judgement, world model and

behaviour generation modules. All levels are joined by a global memory through which the

representational knowledge is shared.

Figure 5.10: Abstract Hierarchical Layer Organisation of the NIST Real-Time Controller System

Architecture

Figure 5.10 shows an abstracted view on a node. The abbreviations were explained in the

beginning of the real-time controller architecture section 5.2. It is visible that the sensor data

input is directed to each sensor processing module of each level and each sensor processor

generates a report as output. This report consists of the sensor data and additional information

including the predictions of the world model. From the lowest level, which receives the sensor

28

5 Deliberative Paradigm

data �rst, since it is the closest to the sensors (see also the yellow arrows in �g. 5.11) to the

highest level, the scope of the sensor information is increasing and enables the planning of

future activities. The transfer of the sensor data from level to level implies that the world

model module of each node works on the same knowledge basis as the other world module of

the same layered nodes.

Retrievable from the table 5.1 below, in the sensory knowledge row, are the sensor views on

the information of each level. The lowest for example receives points as information base

for task planning, the second level combines these points and creates thereby lines, the next

creates out of these lines surfaces and the level four combines these surfaces to objects and has

therefore as already mentioned a more increased scope. Higher levels than level four contain as

sensory information the contexts of other objects at a speci�c time in the nearest environment.

This process, that incoming sensor data (see the yellow lines in �g. 5.11) gets passed from the

lowest to the highest level, builds a graph.

Level
No.

Level Title Time Period
Example

Sensory Knowledge

1 Servo 0.03 sec Points

2 Primitive 0.3 sec Lines

3 Elementary Move 3 sec Surfaces

4 Individual for next 30 sec Objects

5 Group for next 5 min Task context for next 5 min

6 Group2 for next hour Task context for next hour

Table 5.1: Level Overview with Time and Sensory Information

In contrast to the sensor input, the command input of the behaviour generation module

starts from the highest layer and is leaded forward to the lowest level and at last to the actuators

for action execution (see �g. 5.10). The behaviour generators of each level decompose the task

into subtasks. The time period for computing the subtasks are shorter the lower the level is

positioned (see example times in the table 5.1 above). Therefore the subtask of the lowest layer

is more detailed than the highest. On the other hand the highest level is able to look-ahead

and has more information about the main goal, while the lower ones simply perform obtuse

task which can be used for any bigger goal. This also re�ects in Albus’ following declaration

that "planning horizons at high levels takes longer, while planning horizons at the bottom

level typically are less than 50 milliseconds" [cf. Albus (a)]. The bigger goals take longer to

accomplish than the sub-goals which are sorely leading to the accomplishment of the complete

29

5 Deliberative Paradigm

goal.

Figure 5.11: Reference Model of the NIST Real-Time controller Architecture

In �gure 5.11 the plan actions are illustrated by the blue lines. Also visible is the tree structure

which represents the planning process of each level of the behaviour generation module of

this architecture. The highest levels (see also table 5.1 at level number 5-6) are called Groups.

There are more higher groups addable to the system depending on the extent of the application.

"Group2" (level 6) is responsible for the coordination for several groups and a higher "group3"

would coordinate the several group2’s of systems. The more level the more complexity has the

system and the higher is the scope. Level 5 is the base group and coordinates the actions of a

small group in the direct near of this system, to avoid future coordination problems. The title

of the fourth level is depending on the task. To keep it universal it is called "individual". Its

purpose is to accept the given input commands from level 5 and to convert these into suitable

tasks for the subsystem which is composed of level 1,2 and 3. It splits the task as visible in

the example in �gure 5.11 into four sub-tasks, each with a di�erent functionality. These four

subtasks are visible in the Level 3, the elementary move level (or abbreviated e-move as in the

�gure). This level accepts the given tasks and computes the main plan which shall be executed

to execute the task (the equivalent of the in section 5.1 described navigator of the nested

hierarchical controller architecture). Level number 2 is called primitive level. It generates

according to the received plan the action commands (equivalent to the pilot of the nested

30

5 Deliberative Paradigm

hierarchical controller architecture in section 5.1) for the �rst level. The �rst level is the closest

level to the actuators and sensors. Like the low-level-controller of the nested hierarchical

controller architecture (section 5.1) it transforms the given commands into actuator control

commands. Finally the computed task gets executed by the actuators which form the basic

level of the tree structure from the behaviour generation module.

5.2.2 NIST Real-Time Controller System Architecture and ROS

Represented as nodes are following modules: sensory processing, value judgement, behaviour

generation and world model as well as the knowledge database, because each of these nodes

are having a certain functionality as a process.

A recommendation of the implementation of the communication of the real-time controller ar-

chitecture in ROS is visible in �gure 5.12. This �gure is simply a diagram of all communication

types joined in one and that the standard notation of services and topics may di�er.

Figure 5.12: ROS Communication of the NIST Real-Time controller Architecture

The sensory processing node publishes on the topic /perceived_situation and this topic is

subscribed by the value judgement node which extracts the latest sensor data from it. This

asynchronous communication is recommended because it enables the sensory processor to

publish directly after it �nished modifying the raw sensor data and the value judger works on

the most current data. Moreover the asset that a topic is a unidirectional communication lead

to the decision to a topic since exclusively the sensory processor gives information and does

not receive any from the value judger.

31

5 Deliberative Paradigm

The sensory processing node also publishes on the topic /sensory_update. This topic is

subscribed by the world model node and the knowledge database node. The decision of

two publishing to two topics depends on the internal structure. The value judgement node

can also subscribe to the /sensory_update topic and consequently the publishing on topic

/perceived_situation would not be necessary any more so that there is only one topic the

sensor processor publishes on and which is subscribed by three nodes. As mentioned that

depends on the internal structure. This decision is based on the assumption that the sensory

processor uses di�erent algorithms on the raw sensor data for the value judger than for the

world model and knowledge database node. If it is using the same data for all three nodes it is

recommended to publish sorely on one common /sensory_update topic.

It may attract attention that the knowledge database is a independent node and not included

into the world model. This is also based on design decisions. The knowledge database behaves

in this case more like a common database and it is more clear to plot it in that way. Moreover the

knowledge database is accessible for each level in the hierarchical layered view (see 5.10) and

this independent representation signalises it. The knowledge database is �lled with information

about the environment by the sensory processing node, combines those information with

existing information and o�ers its knowledge by a topic /knowledge to the world model.

The world model subscribes to it and retrieves the necessary information. Speaking again

of design decisions it is possible to provide a service between world model and knowledge

database instead of the topic. This may more clarify the request-response relation of a common

database.

The world model node also functions as a publisher by publishing predictions, based on

simulation, to the /predictions topic and the sensory processing node is subscribed to this

topic. Another topic on which the world model acts as a publisher is the /state node which is

subscribed by the behaviour generation node.

The communication about the situation assessment part is discussed now, it remains the

communication about the planning. As mentioned before the main planning consists of three

components. The behaviour generation node, which generates tentative plans and imparts them

via the /tentiave_plan topic to the world model node. Then the world model, which passes the

results of this plan to the value judgement node via a service. And �nally the value judgement

node, which provides the plan evaluations by publishing to the topic /plan_evaluation, which

is subscribed by the behaviour generation node. The decision of the service between world

model and value judgement node is based upon the dependency, that the world model sends

the result of the plan to the value judger and requests thereby the evaluation, this evaluation

32

5 Deliberative Paradigm

based on the plan is necessary for the world models predictions and therefore a service is more

recommendable for this communication.

5.2.3 Analysis of the NIST Real-Time Controller System Architecture

The NIST real-time controller architecture has been successfully in use for applications like ve-

hicle guidance and mining equipment. Therefore it shows that it is applicable and suggestive to

use as an architecture for robot software development. In comparison to the nested hierarchical

controller architecture (see section 5.1) it is much broader in its areas of possible applications.

The architecture enables the developer to integrate various algorithms for di�erent use cases.

The architecture is usable to accomplish tasks such as navigation or adjustment of objects and

object recognition.

Since it functions as a closed-loop control system, which means that it receives its computed

output (in form of actions) also as direct input (in form of sensor data) as a feedback whether the

computed result was accomplished or failed in progress which will be observed in the sensory

processing module and attempts to be prevented for the next upcoming tasks or sub-tasks.

This closed-loop control schema provides the architecture with robustness. Another aspect

of robustness provides the world model module. Since the world model simulates proposed

plans on base of current sensor data of the knowledge database before execution, it can be

guaranteed that the robot reacts the way it is supposed to. Guaranteed under the constraint

if we assume a close world. In an open dynamic world it is only assumable that the plan

will proceed successfully, because there are several dependencies which cannot guarantee a

progress without incidents. For example the plan computation and evaluation have to process

in an adequate fast time as the world might change quickly and the simulation is not any

more based on the latest sensor data. The robustness also gets bene�t by the value judgement

module which is able to evaluate not only the costs, but also the risks of a plan. Therefore the

behaviour generator has a reliable feedback whether the execution is safe or not.

The evaluation process of the value judging module is also in favour of the e�ciency of the

architecture. Because of the evaluated tentative plans the behaviour generator is able to trade

o� on plan against another and is able to choose to execute the most e�cient for the application.

The the real-time control architecture surely full-�lls the criteria of modularity, since it decom-

poses functionality and tasks by the hierarchical layering and modulating the planning (see

section 5.2.1). The organisation of nodes enables adding and removing levels, if the necessary

interfaces will be implemented. Moreover it is expandable by more layers (the groups) to make

the architecture more complex.

Another advantage would be that the architecture is able to react in real-time to external

33

5 Deliberative Paradigm

sensed events. The reaction still occurs with a delay because it must run through the planning

and thereby simulation section, but it can be assumed that because of the decomposition of

the tasks and the time durance of the lowest layers, the reaction happens faster than a robot

based on the nested hierarchical controller architecture would.

On the other hand exactly this complex planning instance is causing an uncertainty. It is not

ensured that the robot is able to avoid fast upcoming objects early enough, because especially

the simulation and evaluation part is the bottleneck of the architecture and it cannot be accu-

rately predicted if the robust avoidance plan will be executed in time. Another disadvantage is

the portability. Although the architecture is expandable, it does not provide integrating a new

functionality easily. The reuse for another type of application would include rewriting a lot of

code.

In summary it is recommended to use this architecture if the robot should be able to do more

than navigation tasks. Also if the robots task is only to navigate through its environment

without any further interaction, the more complex the environment gets the more suitable

is this architecture since it is able to manage complex environments and commands and still

ensures functional robustness. It is also suited for the communication between multiple robots

based on this architecture, since the group levels are able to foresee the actions of other robots

by communication (mostly LAN, for higher group level WAN).

This architecture is based on the hierarchical paradigm and it full-�lls its standard by passing

sense plan act hierarchically and also the intern structure of the plan component follows the

hierarchical order. But it is already a step closer to the paradigm which will be introduced in

the next chapter 6 as the reactive paradigm in which decomposing behaviour by functionality

is also used for reactivity.

34

6 Reactive Paradigm

The reactive paradigm contains only two instances: sense and act. As distinguished from the

SPA-cycle of the earlier discussed deliberative paradigm (see chapter 5), this paradigm has no

planning instance. This causes that there is a tight mapping between perception and action

(see �g. 6.1).

Figure 6.1: Direct coupling of sense and act

Since the sensor data input is directly mapped to the actuators output, the system is very

reactive to changes in sensor data. The highest aim is to let the robot response in real time to

occurrences in the environment. Speaking of environment, unlike the deliberative paradigm

where the robot has its own world model, the reactive paradigm abdicates an own world model

and is able to �nd its way in an unstructured world like the real one. This can be simply

accomplished because of the direct reaction of the sensor data. Creating a world model would

take too long time and the paradigm would be less timely reactive. This control by what is

happening in the environment via sensor information, makes a memory unnecessary. The

robot does not need to try to look ahead, because it does not plan next steps.

The expression "behaviour-based architectures" is commonly used in relation to reactive

paradigms, this proceeds from the sense-act couplings which are called behaviours. Behaviours

serve as basic building blocks for robotic actions. The robot is composed of multiple instances

of behaviours. These behaviours are sequential or concurrent processes which all receive

the same sensor data and compute their actions. Each process is unrelated to the other ones,

they terminate by themselves independently. The main action executed by the robot is a

combination of all behaviour outputs (see �g. 6.2).

In �gure 6.2 the concurrent behaviours are shown. These behaviours can represent for exam-

ple following instances: build map, explore, wander, avoid obstacles, etcetera. Each behaviour

35

6 Reactive Paradigm

Figure 6.2: Sense-Act Couplings as Concurrent Behaviours

calculates its reaction to the same sensor data and the actuator command is a combination of

the diverse behaviour outputs. This combination can be processed by di�erent algorithms and

depends on the implementation of the robot. Using behaviours causes modularity which makes

the structure of the architecture not only easy to understand but it also enables to plug-in

more behaviours or delete some. Hereby it causes a more dynamic and individual use of the

architecture and allows an easy modi�cation.

A further addition is necessary before leading to Rodney Brooks subsumption architecture,

which represents the behaviour-based paradigm the best. The �gure 6.2 of the basic process can

be expanded by an arbitration instance to point out the creation of a single actuator command.

This expansion is visible in �gure 6.3.

The arbitration instance contains the speci�ed algorithm which computes the �nal command

for the robot’s action of all behaviour outputs. The implementation of this arbitration depends

on the use case. A possible algorithm could be a combination of all outputs or another possibil-

ity would be a priority based use of only one output. Using only one output would lead to an

inhibition of the other outputs. Such an architecture is based on Rodney Brooks subsumption

architecture in following chapter 6.1.

36

6 Reactive Paradigm

Figure 6.3: Arbitration Creates one Actuator Command

6.1 Subsumption Architecture

Figure 6.4: Rodney Brooks Model of Subsumption

The subsumption architecture is a layered methodology for robot control systems. It consists

of coupled components and their hierarchical behaviours. One component is superimposed

on the other as single layers. Layers or also called levels, in the context of Rodney brooks

subsumption, represent behaviours which were introduced in chapter 6. Each layer disposes

of an arbitration scheme which empowers higher layered behaviours to manipulate the input

and output of lower behaviours by suppressing the input or inhibiting the output (see �g. 6.4).

The inhibition of the output is a substitution of the arbitration instances in �gure 6.3, therefore

it is more speci�cally de�ned in the subsumption architecture. Also visible in �gure 6.4 is that

each layer receives data from the sensors and the actuator receives one calculated output for

37

6 Reactive Paradigm

the control, independent from the number of registered layers (already detailed described in

chapter 6 before).

6.1.1 Subsumption Architecture Implementation Analysis

The idea of Brooks’ subsumption architecture is from 1986. It still has in�uence in nowadays

robotics since many instances of robots and autonomous systems are still built using this

philosophy. Today’s environment puts high requirements on a reactive system. For example it

has to be extremely performant, needs to be �exible and especially safe under all circumstances.

The subsumption architecture is well known for being very reactive and robust. As mentioned

the idea is from 1986, robot technologies are changing very fast. Not only requirements are

increasing and getting more complex, but also technical tools are getting more comfortable

and ensure an e�cient use. Consequently it has a signi�cance to implement the subsumption

architecture according to new standards and modern views. Therefore a new implementa-

tion of the subsumption architecture will be introduced in this chapter. This implementation

concentrates on the memory management by taking advantage of C++14, the modularity

(therefore testability) and the use of e�ectively modern patterns which reduce the complexity.

Figure 6.5: Subsumption Adjusted to Implementation

The implemented subsumption architecture is composed of di�erent components. These

components are the same as in �gure 6.4, but for the following description �gure 6.5 is used,

since it is adjusted to the implementation. Components are the sensor, the suppressors, the

levels, the inhibitor and the motor. The sensor o�ers the input data which it sensed from the

environment. The suppressors (see �g. 6.5 S0 and S1) in�uence the input data for the current

level by suppressing it by the higher layered level. The levels (see �g. 6.5 level0, level1, level2)

38

6 Reactive Paradigm

include the individual behaviour. Its input is either the sensor data or the suppressed input

from the higher level. It has two outputs, one is for the input of the suppressor of the lower

layer and the other one calculates the level output for the motor. The inhibitor (see �g. 6.5

I0,I1) in�uences the output data from the current level by the level output from the higher

layered one. The motor receives the output from the lowest level. Therefore the arbitration is

based on the inhibitors. The highest levels have a higher priority than the lower ones which

leads to a priority based arbitration.

Figure 6.6: Class Diagram

The class diagram (see �g. 6.6) consists of four components which are related to the

components of Rodney Brooks model (see �g. 6.5 and �g. 6.4). SensorData corresponds

with sensor, ActuatorData with the motor, the Level with either suppressor, level and inhibitor.

The fourth component, the Controller, is an additional component which manages the levels.

The level component represents an interface for all levels (see �g. 6.6 level0, level1, level2).

Therefore it is expandable by a various number of those levels. New levels derive from the

interface and implement its three virtual functions. Each level has its own local SensorData for

the input and for the output its own local ActuatorData object. The levels are not aware of

the Controller. The Controller has a pointer to the root level with which it is able to control

the subsumption procedure by the composite pattern. The reason for this certain abstracted

implementation is that within this structure the adding of single levels is easier than for

example with an implementation in which each component is a single class. Because of the

Controller the registration of the new created level became very dynamic and �exible, only

one line is necessary to add the new level. There is no further changing of already existing

code, therefore the other levels still function as they would without the new one which also

39

6 Reactive Paradigm

leads to the testability. Each level can be tested individually. Consequently this ensures the

functionality of the architecture and facilitates the debugging if a problem occurs.

Subsumption Code Analysis - Call Procedure

Listing 6.1: Call Procedure

1 MotorData startLevel(const SensorData& sensorData){
2 if(higherLevel == nullptr){ // this is the top level
3 motorOutput = executeLevel(SensorData);
4 }
5 else{ // this is an intermediate level
6 //start the higher level at first
7 higherLevel->startLevel(sensorData);
8 sensorInput = suppressInput(sensorData ,
9 higherLevel->suppressControl);

10 motorOutput = executeLevel(sensorInput);
11 motorOutput = InhibitOutput(motorOutput ,
12 higherLevel->motorOutput);
13 }
14 return motorOutput;

The main process of the subsumption architecture is implemented in the startLevel function

of the class Level(see �g. 6.1). The basic progress is from the highest level to the lowest and

from left to right. Therefore the calling order for all levels except for the highest should look

like this: Suppressor (see 6.1 suppressInput, line 36), the Level (see 6.1 executeLevel, line

37) and Inhibitor (see 6.1 inhibitOutput, line 38).

The highest level solely calls the executeLevel method (see 6.1, code line 31-33). Since

the highest level has no higher level as consequence higherlevel is a null pointer. Another

consequence is that neither suppressed inputs nor inhibit outputs exist. Code lines 31-33,

according to the composite pattern, are for the primitive object which has not any children.

The functionality about the composite design pattern is retrievable from this source [Gamma

u. a.]. In lines 34-39 is the progress for all composite level objects. The procedure starts with

the root level. This can be either a leaf (in case there is only one level), then the procedure will

simply execute the level (see �g. 6.1 code line 32) or it can be a composite (if more than one

level). If the root level is a composite, the �rst thing to do is calling the startLevel procedure

for its higher level in line 35. This calls recursively all higher levels of the root level until the

highest level, the leaf, is reached. From that point on the previously described function calling

40

6 Reactive Paradigm

order is employed. In line 40 the output of the lowest level will be returned. It is the output on

which each level had an in�uence. Because of the recursion the controller simply needs to call

this function one time to provide the whole subsumption procedure.

Subsumption Code Analysis - Controller

The class Controller is the component which organises the registration of the levels and starts

the arbitration for the actuator output. It has a pointer to the root level or to put it another

way to the lowest level in the architecture, therefore it can address any registered level because

of the composite pattern.

Listing 6.2: Level registration by the Controller

1 //create a linked list of levels
2 void registerLevel(Level* level){
3 level->higherLevel = rootLevel;
4 rootLevel = level;
5 }

In the function registerLevel (see 6.2) the attribute higherLevel of the new level is set as

the known root level of the controller (see code line 60). And the root level pointer will be

updated and receives a pointer to the new level (see code line 61). In the end all levels are

linked to each other by knowing their upper level and the controller only needs a pointer to

the lowest level. This data structure of a singly linked list is much more e�cient than for

example maintaining a list of levels, because the controller only needs to know one level and

no loops are required.

Listing 6.3: Arbitration

1 void arbitrate(const SensorData){
2 rootLevel->startLevel(data);
3 }

The arbitrate function (see 6.3) is the start method for the whole progress of arbitration. As

explained the controller only needs to know the root level, it simply calls up the startLevel

procedure which handles as in chapter 6.1.1) described the progress of the actuator output

arbitration of all levels. The controller also processes the communication with the actuator

for the level by o�ering a getOutput function which has the output of the subsumption

architecture as return value. For this function is also only the root level necessary, because as

shown in �gure 6.5 all upper levels make an impact on the output of the lower levels thus the

output of the root level is the output which is supposed to be used for the actuator.

41

6 Reactive Paradigm

Subsumption Code Analysis - Adding Levels

To create a new subsumption level which shall be added to the structure/architecture the

user needs to derive from the abstract class Level (see �g. 6.6). For each level the following

functions (visible in 6.4) denoted by virtual, which implies that the method is implemented at

another location, must be implemented: suppressInput (code lines 20 - 22), executeLevel

(code lines 23 - 25), inhibitOutput (code lines 26 - 28).

Listing 6.4: Virtual Functions

1 virtual SensorData suppressInput(const SensorData& data ,
2 int suppressControl){
3 // every level has its own copy of data
4 return data;
5 }
6 virtual MotorData inhibitOutput(const MotorData& motor ,
7 const MotorData& motorDataFromHigherLayer){
8 // every level has its own copy of motor
9 return motor;

10 }
11 virtual MotorData executeLevel(const SensorData& data){
12 //every level has its own copy of motorData
13 return motorOutput;
14 }

The function suppressInput represents the suppressor of the level (see �g. 6.5 S0, S1). The

task of this function is to evaluate the input for the level (see �g. 6.5 data) by the in�uence of

the suppression from the higher level (see �g. 6.5 the suppressControl) on the current sensor

data. An explicit algorithm depends on the intentional use for the architecture and needs to be

added by the user. Note that this function will not be called if the level is the top level. The top

level gets directly the unsuppressed data from the sensors (see chapter 6.1.1 code line 31-33).

The function executeLevel includes the main algorithm for the data processing and depends

on the use case. As an input argument it gets the pure data from the sensors if top level or the

suppressed data from the suppressor.

The function inhibitOutput is similar to suppressInput. It represents the inhibitor of the

level (see in �g. 6.5 I0,I1) and it evaluates the actuator output in conjunction with the current

level output and the output of the higher level (see �g. 6.5 the actuatorDataFromHigherLayer).

This function will not be called if the level is the top level. The top level sets the uninhibited

data from the layer (see chapter 6.1.1 code line 31-33) directly as actuator output.

42

6 Reactive Paradigm

Listing 6.5: Level Registration

1 ...
2 // register levels from highest to lowest
3 controller.registerLevel(new Level2);
4 controller.registerLevel(new Level1);
5 controller.registerLevel(new Level0);
6 ...

To add the new level to the architecture the method registerLevel is used and its argument

is an instance of the new level (see 6.5). The description of this function was detailed explained

in chapter 6.1.1.

6.1.2 Subsumption Architecture and ROS

The communication decisions are based on �gure 6.5 to mainly show how the communication

of the subsumption architecture in general would be implemented in ROS, but still in regard of

the architectures suggested implementation.

Figure 6.7: ROS File System Structure of Subsumption Architecture

The �le system structure in ROS would look as visible in �gure 6.7. Each layer of the

subsumption architecture represents a package. Each package consists of three nodes: sup-

pressor, level and inhibitor. All of these nodes must have a unique identi�cation number as

well as the packages. The number of packages in ROS equals the numbers of layers of the

subsumption architecture. To use each package as a level enables to add or remove behaviours

43

6 Reactive Paradigm

more simply. It is sorely necessary to complement or remove parts of the message �les of

the packages which represent the "neighbour" layers to which the new package shall cooperate.

Figure 6.8: ROS Communication of the Subsumption Architecture

The ROS communication of the subsumption architecture is indicated in �gure 6.8. As

mentioned the package of the respective layer consists of three nodes. First the communication

within the package will be analysed. The suppressor node with the identi�cation of the

respective layer number publishes the suppressed sensor input to the /sensor_input topic.

The level_id node subscribes to this topic in order to receive the sensor input. The level node

functions also as a publisher for the topic named /level_output. Subscribed to this topic is the

/inhibitor_id node.

Now following is the communication with nodes of other packages. The level_id node of

the package Layer_id publishes on a topic /suppress_control_id. The /suppressor_id− 1

node is the subscriber of the topic. This node is located in the package Layer_id−1. Moreover

is the /inhibitor_id− 1 node of this package subscribed to the /inhibit_control_id topic of

the Layer_id packages. This package itself communicates analogous to this with its lower

44

6 Reactive Paradigm

layer package (for example Layer_id− 2).

The whole communication is based on topics because the topic communication is unidirectional

and since the components do not need a bidirectional communication using topics is the best

choice to implement the communication in ROS.

6.1.3 Analysis of the Subsumption Architecture

The subsumption architecture is used to realise a reactive real-time interaction with an open

and therefore dynamic environment. Its usability has been demonstrated by the fact that is

"have been implemented on various computational platforms in di�erent robotic hardware

structures" [cf Langton].

Modularity is supported in the subsumption architecture by the layers. Since each layer

represents a speci�c behaviour and computes independently the individual output based on the

common input. The layers are separated in functionality which is also in favour of modularity.

Mainly this modularity causes the robustness of the architecture. In case of a failure of a

layer, the system is able to continue running since the other layers are still able to run their

functionality. The corrupted layer is also easy to debug due to modularity. In summary the

subsumption architecture avoids centralized control by having self-centred autonomous and

parallel processing modules of layers.

Another advantage is that the subsumption architecture is very reactive, which is the reason

that it represents the reactive paradigm. In consequence of the suppressors and inhibitors the

system is able to support immediate reactivity. A parallel execution of the layers increases the

e�ciency of the architecture.

Layers can be reused for other robotic systems if they have to implement the same behaviour.

Despite this portability criterion of reusing behaviours, for the portability it is still necessary to

rewrite some code. Inhibitor and suppressors algorithm changes with regard to another robot

system. Also additional behaviours may be required. The basic behaviours, such as avoiding

obstacles or wandering, are mostly reusable for other mobile robot systems. Summed up the

portability is partly guaranteed, but still includes some new code writing.

Layers are solely able to communicate with their upper and lower layers via the inhibitors and

suppressors. Therefore a combination of behaviours is impossible and often redundant code

writing in the level component since it cannot access existing code as a sub-function from

other levels. But the redundancy of code sections is a disadvantage which is negligibly, since

the subsumption architecture is more focused on the modularity, which is only reachable with

the disadvantage of redundancy.

The architecture is expandable by multiple layers. The more added layers the more complex

45

6 Reactive Paradigm

the architecture becomes. But since there is no o�cial limit of extension, it is possible that the

e�ciency lacks by increasing complexity. Lower prioritized layers might not be able to execute

their actions if there are too many higher prioritized layers suppressing them. Consequently it

is important that the number of layers does not become too complex.

The reactive subsumption architecture includes no strategic planning or learning. Due to its

high standards in accomplishing reactivity it simply is able to react to environmental conditions

or by receiving goal inputs. An independent look-ahead planning and action selection is thereby

impossible. For the integration of planning and learning processes to reactivity, the hybrid

architectures are used (see chapter 7).

46

7 Hybrid Paradigm

The hybrid robot control paradigm is a combination of the deliberative/hierarchical paradigm

and the reactive paradigm. This is also the reason why this control paradigm is also called

deliberative/reactive paradigm. Since it is a combination of both paradigms it also consists of

the sense, plan and act components. The organisation of theses components can be described

as plan, sense-act. As visible in �gure 7.1 the plan component is the one which is higher

situated. Sense and act however on the same level, which symbolises the previously mentioned

sense-act organisation.

Figure 7.1: Sense, Plan, Act of the Hybrid Paradigm

The sense and the act component work directly together unlike it was the case in the de-

liberative control paradigm (see chapter 5, �g. 5.1). This close cooperation is based on the

reactive paradigm which represents this tight coupling between perception (sense) and action

(act) (see chapter 6, �g. 6.1). The deliberative paradigm is represented by the existing of the

plan component. Summed up the hybrid paradigm is conceptually divided into a reactive part

and a deliberative part.

Due to the reactive part the robot is able to react to environmental conditions like an emerging

obstacle and is in the position to avoid it fast, on the other hand the robot is able to plan on

longer-term goals and tasks. The reactive part owns the low-level control part which enables

the reactivity of the architecture. It involves short time horizons which de�ne the presents

situation since this part does not contain any global knowledge. On the contrary the the

deliberation component contains a global knowledge representation. It is responsible for more

47

7 Hybrid Paradigm

complex tasks or goals, the higher level goals/tasks with increased scope of the environment.

Therefore it is designed for long time horizons, which de�ne the future actions.

The theoretical idea of the hybrid paradigm was to combine the advantages of both paradigms.

In the �eld the experiences di�er. By analysing a representative hybrid type of architecture

later in this chapter, it will turned out that not only the advantages, but also the disadvantages

will be combined and even disadvantages of one paradigm are able to shadow the advantages

of the other one.

The question is how these parts can be combined in a architecture, especially how it is possible

to combine the slow planning with the fast reactivity. The hybrid paradigm executes both the

deliberative part and the reactive part at every speci�ed architecture concurrently, otherwise

it would not be reactive enough. Two basic abstracted possibilities exist for the combination of

the reactive paradigm and the deliberative. The �rst one is visible in �gure 7.2. In this case

the deliberative component is integrated into the behaviour arbitration by the controller. It

receives the same sensor input as the other components, updates its world model by it and

starts the planning process by continuously observing the world model state. After processing

its output takes part in the arbitration process like the reactive behaviours.

Figure 7.2: Deliberative Component Integrated into Behaviours

The other possibility is visible in �gure 7.3. There is the deliberative component primarily

segregated from the reactive process and functions as an activator of behaviours. Again the

deliberative component and the reactive behviour components receive the same sensor data,

48

7 Hybrid Paradigm

the internal processes of the deliberation part remain the same as in the �rst introduced

possibility. The output is transferred to a speci�c behaviour which is able to accomplish the

output plan, this is the behaviour activation by the deliberator. Then the plan takes part at the

actuator command arbitration with the other behaviours.

Figure 7.3: Deliberative Component Segregated from Behaviours

Those basic layouts represent an abstract way of how the paradigms can be combined. More

detailed are the three di�erent architecture designs of which nowadays hybrid robot systems

are based on. These genera of architectures are called: the state-hierarchy architecture, the

model-oriented architecture and the managerial architecture.

In all of the three architectures the following �ve basic hybrid components are integrated:

• Sequencer:

Generates a sequence of behaviours

• Resource Manager:

Allocates resource to behaviours, behaves like a controller

• Cartographer:

Responsible for the maintainable of the map information, equivalent to the world model

49

7 Hybrid Paradigm

• Mission Planner:

Receives the command input and computes the mission

• Performance Monitor:

Observes the planning progresses towards the goal

All these three architecture structures are represented by speci�c architectures. Furthermore

the basic hybrid components will be identi�ed for this architecture. The state-hierarchy

architecture by the three-tiered architecture (see [Vladimir Kulyukin]), the module-oriented

architecture by the task control architecture (see [Silva und H.Ekanayake] and the managerial

architecture is represented by the autonomous robot architecture. This architecture will be

detailed analysed in the following (see 7.1).

Since the hybrid paradigm is a combination of deliberative and reactive paradigm, this chapter

includes some known and before discussed parts of those paradigms. Therefore a knowledge of

those paradigms and their components is assumed and will not be explained again in detail. For

following architecture the implementation of the ROS communication will not be discussed,

since the similar parts it would be redundant. The only addition is the communication between

the "Hierarchical Planner" and the "Motor Schema Manager", which would be realised in ROS

by an service, since the feedback from the schema manger needs to be processed in time.

7.1 Managerial Architecture - Autonomous Robot Architecture
(AuRA)

The managerial architecture has its name because of its composition of responsibilities which

resembles a business management. A representative managerial architecture is the autonomous

robot architecture (abbreviation AuRA) which was developed by Ronald C. Arkin.

The hybrid autonomous robot architecture consists of the following main components: the

cartographer, perception, motor, homoeostatic control and hierarchical planner. All these

components are visible in �gure 7.4.

The sensors send the raw sensor data to the perception component. This component consists

of multiple sensor processing modules, which are conform to the sensor processing modules

of the NIST real-time controller system architecture. The sensor processor is responsible for

preprocessing the raw sensor data for the cartographer and for the motor component, for more

information about the sensory processing module see 5.2.

Those preprocessed data will be send to the motor and to the cartographer component. First

50

7 Hybrid Paradigm

Figure 7.4: Autonomous Robot Architecture

the deliberative layer will be analysed, therefore the cartographer. The cartographer com-

ponent is comparable to the in deliberative paradigms known world model. It includes the

map of the environment based on the sensor processing data and other relevant information

and conditions about the environment. It is responsible for maintaining and providing those

information (more information see 5.2 and also 5.1).

The other deliberative component, the hierarchical planner, is based on the plan component of

the nested hierarchical controller architecture (see 5.1). The planner therefore consists of a

mission planner, a navigator and a pilot. The mission planner is in charge of processing the

received mission under consideration of the external and internal conditions and imparts the

mission goal to the navigator. It is the function of the hierarchical planner with the lowest time

constraints. A di�erence between this mission planner and the nested hierarchical controller

plan component (5.1) is that this mission planner receives three inputs. The map from the

cartographer and the external command input (e.g. by a human interface), which represents

the mission, are equivalent. The third input is additional and includes the current internal

states and safety considerations by the homoeostatic control component.

At this point a short excursion to the homoeostatic controller component is appropriate. The ho-

moeostatic controller gathers data for internal surveillance of the robot. It observes hazardous

condition for example too high temperatures or low energy levels and is able to intervene

51

7 Hybrid Paradigm

into the motor components processes and the mission planning, so that these factors can be

considered. Since it is used for either the deliberative or the reactive layer, this component can

be classi�ed by both paradigms.

The second module of the hierarchical planning component is the navigator. Its timely con-

straints are increased in comparison to the mission planner. The navigators responsibilities

are also equivalent to the navigator from the nested hierarchical controller architecture (5.1).

Its computed path and necessary parameters are send to the pilot which tasks are similar as

well to the aforementioned architecture.

The pilot focuses on a path segment of the received path and selects appropriate motor schemata,

which are analogous to behaviours, to accomplish the planned goal and transfers them to the

motor schema manager. The pilot is the module of the hierarchical planner with the highest

requirements of temporality.

Both the navigator and the pilot represent the basic hybrid sequencer component, because

they generate the sequence of schemata for accomplishing a goal. Moreover the hierarchical

planner in total represents the performance monitor since it is able to observe whether the

accomplishment of a goal progresses.

The schema manager is included into the motor component. It represents the hybrid basic

component of the resource manager, because it is the facilitator between the deliberative and

reactive layer. It is responsible for the execution of the pilots transferred plan in form of an

schema and forwarding it, after processing, to the multiple motor controllers. Moreover it is

responsible for the monitoring of the schema execution and is able to act upon this execution

by starting and stopping it as well as introducing the planners schema. It also feedbacks the

pilot if the current situation is changed and the plan must be modi�ed to it. In this case the

feedback information transferring process within the hierarchical planner is the same as in the

nested hierarchical controller architecture (see 5.1). More detailed information about motor

schemata and the motor schema manager can be read in [Arkin (c)].

The motor component is part of the reactive layer and consists of the aforementioned motor

schema manager and also of various motor controllers. Each of these concurrent motor con-

trollers receive the sensor data from the sensory processing modules, computes its output by

the use of a schema and transforms this output into actuator commands. The in �gure 7.4

visible sigma sign receives all actuator commands and arbitrates or combines them to one

actuator command. This process is comparable to the reactive subsumption architecture (see

6.1).

52

7 Hybrid Paradigm

7.1.1 Analysis of the Autonomous Robot Architecture

The autonomous robot architecture has been successfully used by many mobile robots in

di�erent areas such as buildings, outdoor and in manufacture environments. It is not only

able to accomplish navigation tasks, unlike the nested hierarchical controller architecture on

which the plan component is based on, but also able to accomplish manipulation tasks, like the

NIST real-time controller architecture of whose organisation the sensory processing module

and the extended world model (here cartographer) is retrievable. Moreover the architecture

is able to react immediately to environmental conditions by the advantages of the reactive

paradigm since the sensory processor input is directly linked to the motor component which

consists of motor schemes which are comparable to the behaviours. By the use of priorities of

these schemata a fast reaction to emergent environmental conditions is guaranteed and the

motor schema manager is responsible for embedding the planning actions into the execution

arbitration.

This combines mostly the advantages of the two introduced and analysed deliberative architec-

tures (see analysts of NIST real-time-architecture 5.2.3 and analysis of the nested hierarchical

controller 5.1.2). This includes the modularity of the hierarchical planning component by

functional decomposition which also facilitate the time management. Also the advantages

of the reactive paradigm (see 6.1.3) such as reactivity, modularity by decomposition by func-

tionally di�erent behaviour/schemata are advantages of the autonomous robot architecture.

Unfortunately also disadvantages exist, despite the "best of the hybrid aim to combine "best of

both worlds". The portability is still not ensured, since for example the behavioural structure

can only partly on low-level functions be re-used for other robot use-cases. And the robustness

of the reactive paradigm gets minor a�ected by the robustness of the deliberative paradigm,

because it does not involve active simulation since it has to match up with the scheduling of

the reactive part of the architecture.

In conclusion the autonomous robot architecture represents a good aim to combine the reactive

and deliberative paradigm thorough the motor schema manager. Because the manager, of

which the type of hybrid architecture is named, is in charge of observing the execution of the

reactive behaviour, is aware of the environmental conditions by current sensor data and is

able to integrate planning-based schemata into the action process without compromise the

reactivity.

53

8 Conclusion

In the beginning of this thesis were some questions declared, mainly about how can be di�er-

entiated between the paradigms and their representative architectures as well as the question

of the usability in a speci�c use-case. Moreover were the advantages and disadvantages of

each architecture an interest.

Within the analysis of two architectures of the deliberative robot control paradigm were fol-

lowing results, with regard to application area and answering leading questions, extractable.

The result of the analysis of the nested hierarchical controller architecture was that this ar-

chitecture is recommendable for navigation only tasks. The functional decomposition of the

planning function as well as the fact that the plan component, due to this modularity, does not

rerun completely, makes this architecture timely e�cient. Although the hierarchical planning

component communicates directly with the act component and reacts to the action feedbacks,

the architecture has restrictions of real-time. The use of this architecture is recommended for

robots which shall only execute navigation tasks preferably in a closed world or an open world

in which fast reactivity is not essential, like for not safety critical domestic robot projects.

The other deliberative based architecture which was analysed is the NIST real-time controller

system architecture. This did distinguish itself from the nested hierarchical controller archi-

tecture by its plan simulation and sensor data preprocessing parts. This architecture is more

robust and resilient than the previously mentioned deliberative architecture. Moreover it is

quali�ed for not only navigation tasks, but also manipulation tasks. Due to the time spending

simulation and evaluation part this architecture is able to select the plan with the best condition,

but it lacks in temporal respect. Therefore this system is suitable for robots which shall be able

to perform tasks reliable and with an optimum of costs and other criteria, but are not placed in

a very dynamic world, since that would decrease their rigour and reliability.

In conclusion neither the nested hierarchical controller architecture, nor the NIST real-time

controller system architecture can be considered as reactive systems since they do not ac-

complish all characteristics (see section 2.2). The nested hierarchical controller architecture

is more time e�cient, but not as robust and cost optimized as the NIST real-time controller

system architecture. This answers the question in the introduction whether architectures of

54

8 Conclusion

the same paradigm di�er from their characteristic and advantages. Although they used the

same hierarchical component order and represent the sense-plan-act-cycle it is still necessary

to consider their characteristics carefully. This applies not only for the deliberative paradigm,

but also for the both other ones. It was simply only demonstrated on this paradigm.

In general the deliberative paradigms biggest asset is the planning component which enables

the system to develop autonomous actions and goal. Unfortunately is exactly this component

its bottleneck, which compromises its usage in reactive environments.

The result of the analysis of the subsumption architecture revealed that, regarding the questions

and the criteria, this architecture does accomplish the standards of a reactive system. It is due to

the direct mapping of sensing and action highly responsive, because of the multiple concurrent

behaviours. Theses behaviours also favours the resilience and robustness by being facile to

debug in case of failure. They also causing functional modularity and in case of an implemen-

tation in ROS was a asynchronous communication recommended between the behaviours.

The usage of this architecture is recommended for robots which shall operate in a open world.

The reactive paradigm and therefore the subsumption architecture are designed to operate

in a dynamic world. Due to the necessity of external stimuli by a dynamic environment the

reactive paradigm would not be as e�cient as a deliberative system in a closed world. This is

because of the not included plan component. It is not able to develop and re�ne independently

tasks without the environmental input.

In conclusion the decision for the usage of the reactive paradigm for a robot shall be based on

the the criteria whether the robot is supposed to be highly reactive, respectively shall operate

in a real-time environment. If that applies and also safety in regard to reliability is desired,

then this paradigm is the right decision for the robot architecture.

The result of the analysis of the autonomous robot control architecture, which represents

the hybrid paradigm, conduced that by the combination of the deliberative paradigm with

the reactive paradigm, not only the advantages are combined, but also their disadvantages.

Furthermore are some advantages of one paradigm a�ected by the disadvantages of the other.

For example in the autonomous robot architecture is the robustness of the reactive component

decreased by the deliebrative, because it does not simulate the plan which shall be integrated

into the behaviour arbitration properly so that it is prone to failure.

The question of the introduction whether the hybrid paradigm is the ultimate solution for the

design of robot architectures is thereby answered. On the other hand it is the most used and

most e�ective architecture if the robot shall be able to be both reactive and forward-looking.

55

8 Conclusion

In conclusion each paradigm has its advantages and its disadvantages depending on the

requirements and the use-case. In some application areas is the use of a prospective, but less

reactive architecture an asset, in others the usage of a reactive, but less intelligent architecture.

If both is required, which is the nowadays aim, a hybrid is the right decision.

The world is not perfect and out of this reason robots and their architectures cannot be perfect

either, the only aim to pursue is to make the right design decision and to approximate perfection

by continuous development.

56

9 Perspective

This chapter gives a perspective of potential continuation based on this thesis.

Robot control paradigms o�er an amount of possibilities to be extended on base of this paper,

since robot control is an diversi�ed application area.

A possible continuation would be the approach which was included in the subsection 6.1.1

of the subsumption architecture. There was an implementation model introduced for the

subsumption architecture in modern C++. Now it would be possible to pursue this approach

by implementing the other architectures in use of modern and e�ective C++ functionalities.

Another possibility is to extend the ROS implementation of these architecture in use of dif-

ferent ROS packages and simulation tools. The ROSA introduction (see chapter 3), and the

communication as well as the structure of the analysed architectures can be used as a basis

(see subsections 5.1.1, 5.2.2 and 6.1.2).

Another project would be to specialise on arti�cial intelligence for robots to expand the de-

liberative system, and thereby also the hybrid, by useful algorithms. Another possibility for

expansion would be to o�er an overview of useful robot control algorithms in general.

57

Bibliography

[Actuators2015] : Actuator Types: What’s the Di�erence between Pneumatic,

Hydraulic, and Electrical Actuators?. – URL http://machinedesign.com/datasheet/

what-s-di�erence-between-pneumatic-hydraulic-and-electrical-actuators-pdf-download. –

Zugri�sdatum: 2016-12-09

[OxfordDict] : Oxford Dictionary. – URL https://en.oxforddictionaries.com/de�nition/

paradigm. – Zugri�sdatum: 2016-11-17

[ROSwiki2016] : ROS Wiki. – URL http://wiki.ros.org/. – Zugri�sdatum: 2016-11-17

[ROSwikiCommunity2016] : ROS Wiki Community. – URL http://wiki.ros.org/Get%

20Involved. – Zugri�sdatum: 2017-03-01

[ROSwikiGraph2014] : ROS Wiki Graph. – URL http://wiki.ros.org/ROS/Concepts. – Zu-

gri�sdatum: 2016-11-17

[ROSwikiSensors2016] : ROS Wiki Sensors. – URL http://wiki.ros.org/Sensors. – Zugri�sda-

tum: 2017-03-01

[Albus a] Albus, James S.: The NIST Real-time Control System (RCS): a reference model

architecture for computational intelligence, URL https://pdfs.semanticscholar.org/cfc1/

8920c8df27cb4b61fc46e1b6d340cbd06c02.pdf. – Zugri�sdatum: 2016-12-28, S. 23–41

[Albus b] Albus, James S.: The NIST Real-time Control System (RCS) An Application

Survey, URL http://www2.ece.ohio-state.edu/nist_rcs_lib/rcssurvey.pdf. – Zugri�sdatum:

2016-12-28

[Albus c] Albus, James S.: The NIST Real-time Control System (RCS): an approach to

intelligent systems research, URL http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=

820528. – Zugri�sdatum: 2016-12-27, S. 157–174

[Albus u. a.] Albus, James S. ; �intero, Richard ; Lumia, Ronald: Overview of NASREM:

The NASA/NBS standard reference model for telerobot control system architecturere, URL

58

http://machinedesign.com/datasheet/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators-pdf-download
http://machinedesign.com/datasheet/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators-pdf-download
https://en.oxforddictionaries.com/definition/paradigm
https://en.oxforddictionaries.com/definition/paradigm
http://wiki.ros.org/
http://wiki.ros.org/Get%20Involved
http://wiki.ros.org/Get%20Involved
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Sensors
https://pdfs.semanticscholar.org/cfc1/8920c8df27cb4b61fc46e1b6d340cbd06c02.pdf
https://pdfs.semanticscholar.org/cfc1/8920c8df27cb4b61fc46e1b6d340cbd06c02.pdf
http://www2.ece.ohio-state.edu/nist_rcs_lib/rcssurvey.pdf
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=820528
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=820528

Bibliography

https://www.nist.gov/sites/default/�les/documents/el/isd/NASREM.pdf. – Zugri�sdatum:

2016-12-28

[Arkin a] Arkin, Ronald C.: Behavior-Based Robotics. MIT Press. – ISBN 978-0262011655

[Arkin b] Arkin, Ronald C.: Intelligent Robotic Systems: Editorial Introduction, URL http:

//www.cc.gatech.edu/ai/robot-lab/online-publications/expert-intro.pdf. – Zugri�sdatum:

2016-12-27

[Arkin c] Arkin, Ronald C.: Motor Schema Based Navigation for a Mobile Robot: An

Approach to Programming by Behaviour

[Arkin und Balch] Arkin, Ronald C. ; Balch, Tucker: AuRA: principles and practice in

review, URL http://www.cc.gatech.edu/ai/robot-lab/online-publications/jetai-�nal.pdf

[Arkin und Mackenzie] Arkin, Ronald C. ; Mackenzie, Douglas C.: Planning to Behave: A

hybrid Deliberative / Reactive Robot Control Architecture for Mobile Manipulation, URL

http://www.cc.gatech.edu/ai/robot-lab/online-publications/ISRMA94.pdf. – Zugri�sdatum:

2016-12-27

[Arkin u. a.] Arkin, Ronald C. ; Riseman, Edward M. ; Hanson, Allen R.: AuRA: An

Architecture for Vision-Based Robot Navigation, URL https://web.cs.umass.edu/publication/

docs/1988/UM-CS-1988-007.pdf. – Zugri�sdatum: 2016-12-27

[Bekey] Bekey, George A.: Autonomous Robots: From Biological Inspiration to Implementa-

tion and Control. A Bradford Book. – ISBN 9780262025782

[Boner u. a.] Boner, Jonas ; Farley, Dave ; Kuhn, Roland ; Thompson, Martin: The Reactive

Manifesto, URL http://www.reactivemanifesto.org/. – Zugri�sdatum: 2016-10-12

[Brooks a] Brooks, Rodney A.: How to Build Complete Creatures Rather than Isolated

Cognitive Simulators

[Brooks b] Brooks, Rodney A.: A robust layered control system for a mobile robot, URL

http://people.csail.mit.edu/brooks/papers/AIM-864.pdf. – Zugri�sdatum: 2016-12-27

[Butler u. a.] Butler, G. ; Gantchev, A. ; Grogono, P.: Object-oriented design of the sub-

sumption architecture, URL http://users.encs.concordia.ca/~gregb/home/PDF/bgg-spe2001.

pdf. – Zugri�sdatum: 2016-12-27

59

https://www.nist.gov/sites/default/files/documents/el/isd/NASREM.pdf
http://www.cc.gatech.edu/ai/robot-lab/online-publications/expert-intro.pdf
http://www.cc.gatech.edu/ai/robot-lab/online-publications/expert-intro.pdf
http://www.cc.gatech.edu/ai/robot-lab/online-publications/jetai-final.pdf
http://www.cc.gatech.edu/ai/robot-lab/online-publications/ISRMA94.pdf
https://web.cs.umass.edu/publication/docs/1988/UM-CS-1988-007.pdf
https://web.cs.umass.edu/publication/docs/1988/UM-CS-1988-007.pdf
http://www.reactivemanifesto.org/
http://people.csail.mit.edu/brooks/papers/AIM-864.pdf
http://users.encs.concordia.ca/~gregb/home/PDF/bgg-spe2001.pdf
http://users.encs.concordia.ca/~gregb/home/PDF/bgg-spe2001.pdf

Bibliography

[Cormen u. a.] Cormen, Thomas H. ; Leiserson, Charles E. ; Rivest, Ronald L. ; Stein,

Cli�ord: Introduction to Algorithms. 03. The MIT Press. – 595–601 S. – ISBN 9780262033848

[Gamma u. a.] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design

Patterns. – ISBN 3826697006

[Huag und Messina] Huag, HUI-Ming ; Messina, Elena: NIST – RCS and Object – Oriented

Methodologies of Software Engineering: A Conceptual Comparision, URL http://www2.ece.

ohio-state.edu/~passino/RCSweb/rcsisd96_9doc.pdf. – Zugri�sdatum: 2016-12-27

[Langton] Langton, Christopher G.: Arti�cial Life: An Overview. MIT Press. – ISBN

978-0262621120

[Meystel] Meystel, A.: Nested hierarchical controller with partial autonomy, URL https:

//ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890017110.pdf. – Zugri�sdatum: 2017-01-

02, S. 251 – 270

[Murphy] Murphy, Robin R.: Introduction to AI Robotics. MIT Press. – ISBN 978-0-262-

13383-8

[Quintero und Barbera] �intero, Richard ; Barbera, A.J.: A Real-Time Control System

Methodology for Developing Intelligent Control Systems, URL https://www.nist.gov/sites/

default/�les/documents/el/isd/ks/RCS_Methodology.pdf. – Zugri�sdatum: 2016-12-27

[Silva und H.Ekanayake] Silva, L. D. ; H.Ekanayake: Behavior-based Robotics And The

Reactive Paradigm A Survey

[Simpson u. a.] Simpson, Jonathan ; Jacobsen, Chrisitan L. ; Jadud, Matthew C.: Mobile

Robot Control - The Subsumption Architecture and occam-pi, URL ftp://ftp.cs.kent.ac.uk/

people/sta�/phw/.old-1999/tmp/CPA-225-Simpson.pdf. – Zugri�sdatum: 2016-12-27, S. 225–

236

[Vladimir Kulyukin] Vladimir Kulyukin, Adam S.: Instruction and Action in the Three-

Tiered Robot Architecture, URL http://facweb.cs.depaul.edu/asteele/Research/Papers/Steele_

ISRA2002.pdf. – Zugri�sdatum: 2017-01-04

[Wieringa] Wieringa, Roel: Design Methods for Reactive Systems. 01. – ISBN 9781558607552

60

http://www2.ece.ohio-state.edu/~passino/RCSweb/rcsisd96_9doc.pdf
http://www2.ece.ohio-state.edu/~passino/RCSweb/rcsisd96_9doc.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890017110.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890017110.pdf
https://www.nist.gov/sites/default/files/documents/el/isd/ks/RCS_Methodology.pdf
https://www.nist.gov/sites/default/files/documents/el/isd/ks/RCS_Methodology.pdf
ftp://ftp.cs.kent.ac.uk/people/staff/phw/.old-1999/tmp/CPA-225-Simpson.pdf
ftp://ftp.cs.kent.ac.uk/people/staff/phw/.old-1999/tmp/CPA-225-Simpson.pdf
http://facweb.cs.depaul.edu/asteele/Research/Papers/Steele_ISRA2002.pdf
http://facweb.cs.depaul.edu/asteele/Research/Papers/Steele_ISRA2002.pdf

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 5. Januar 2017 Milena Hippler

	1 Introduction
	1.1 Motivation
	1.2 Ambition
	1.3 Classification
	1.4 Structure

	2 Robots and Reactive Systems
	2.1 Robots
	2.1.1 Robot Sensory
	2.1.2 Robot Actuators

	2.2 Reactive Systems in Robot Control

	3 Robot Operating System
	3.1 Supported Robot Platforms and Sensors by ROS Packages
	3.2 Structure
	3.2.1 File System
	3.2.2 Computation Graph

	3.3 Communication
	3.3.1 Topics
	3.3.2 Services

	3.4 ROS Environment

	4 Robot Control Architectures
	5 Deliberative Paradigm
	5.1 Nested Hierarchical Controller Architecture (NHC)
	5.1.1 Nested Hierarchical Controller Architecture and ROS
	5.1.2 Analysis of the Nested Hierarchical Controller Architecture

	5.2 NIST Real-Time Controller System Architecture (NIST RCS)
	5.2.1 Multiple Hierarchical Layers
	5.2.2 NIST Real-Time Controller System Architecture and ROS
	5.2.3 Analysis of the NIST Real-Time Controller System Architecture

	6 Reactive Paradigm
	6.1 Subsumption Architecture
	6.1.1 Subsumption Architecture Implementation Analysis
	6.1.2 Subsumption Architecture and ROS
	6.1.3 Analysis of the Subsumption Architecture

	7 Hybrid Paradigm
	7.1 Managerial Architecture - Autonomous Robot Architecture (AuRA)
	7.1.1 Analysis of the Autonomous Robot Architecture

	8 Conclusion
	9 Perspective

