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Abstract
In many object oriented literature runtime polymorphism is often the only way mentioned

to realize interface-based programming. In comparison to other languages, C++ o�ers more

than just that. In C++ interface-based programming can also be achieved through link-time

or compile-time polymorphism. This paper will show how interface-based programming can

be done in C++ when using these three types of polymorphism. The di�erent approaches are

compared with each other at di�erent compiler optimization levels. The paper will also show

that compiler optimization mechanisms like inlining and devirtualization have been improved

to minimize the overhead caused by dynamic dispatch even more.
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1 Introduction

Like Stroustrup says polymorphism is the provision of a single interface to entities of di�erent

types
1
. In many object oriented literature runtime polymorphism (which means the use of

inheritance and virtual functions) is often the only way mentioned to realize interface-based

programming.

In comparison to other languages, C++ o�ers more than just that! In C++ interface-based

programming can also be achieved through link-time or compile-time polymorphism.

The di�erent types of polymorphism distinguish at which point in the process the imple-

mentation is selected.

This paper will show how interface-based programming can be done in C++, when using

the three mentioned types of polymorphism.

Furthermore the di�erent approaches will be compared with regard to their presumably

runtime performance and memory usage at di�erent optimization levels. Callgrind, a pro�ling

tool that gathers information of the call history among methods, will be used to compare the

di�erent approaches.

1

from http://www.stroustrup.com/glossary.html
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2 Approaches

In comparison to other languages C++ o�ers a wide variety of possibilities to implement an

interface. This chapter will give an overview on the di�erent approaches that C++ o�ers.

The most common and probably the only way described in most object oriented literature is

the use of inheritance and virtual functions to implement an interface. The decision which

implementation to use will be made at runtime. This approach will be described in section 2.1

(Runtime Polymorphism).

The second possibility uses link-time polymorphism to determine the implementation that

should be used. This approach will be described in section 2.2 (Link-Time Polymorphism).

The third approach concentrates on the use of compile-time polymorphism to make the

decision on the implementation. This approach will be described in section 2.3 (Compile-Time

Polymorphism).

The following table (2.1) shows when a certain interface implementation has to be used,

because the information that is needed to decide on the implementation is only available at a

certain point.

Decision only possible at . . . Implementation to use . . . Chapter

Run-Time Dynamic Interface 2.1

Link-Time Separately compiled sources 2.2

Compile-Time Implicit Interface 2.3.1

Compile-Time CRTP 2.3.2

Table 2.1: Necessity to use a certain interface implementation

2.1 Runtime Polymorphism

Probably the most common way to implement an interface in C++ is through the use of

inheritance and virtual functions.

2



2 Approaches

The class diagram 2.1 shows two derived classes that implement the interface / abstract base

class DynamicInterface.

Figure 2.1: Class diagram: Dynamic Approach

The code for the abstract base class DynamicInterface is shown in listing 2.1. For a class

to become an abstract class it has to have at least one pure virtual function. A pure virtual

function is speci�ed by the pseudo initializer ’= 0’ (for an example see line 4 and 5).

1 class DynamicInterface {
2 public:
3 virtual ~DynamicInterface(){};
4 virtual void incrementCounter(const uint64_t n) = 0;
5 virtual uint64_t getCounter() const = 0;
6 };

Listing 2.1: DynamicInterface.hpp

It is useful to have a virtual destructor in the base class, because that way it is possible to

delete an instance of a derived class through a pointer to the base class. If the base class does

not have a virtual destructor, the destructor of the base class might be called, which could lead

to a resource leak.

Dynamic Dispatch

At runtime di�erent implementations of the interface DynamicInterface can be used. Therefore

dynamic dispatch or late binding has to be used to determine which implementation of a

polymorphic method or functions has to be called.

3



2 Approaches

A typically implementation of dynamic dispatch is implemented with the use of a data

structure called a virtual table (vtbl).1 A virtual table is a lookup table of pointers to functions

and is used to resolve functions calls in dynamic dispatch.

Every class that uses virtual functions or is derived from a class that uses them has it’s own

virtual table. Every entry of this table is a pointer that points to the most derived function

reachable by that class.

The compiler also adds a hidden pointer vptr to the base class that is set when an instance

is created and points to the virtual table of the class. The vptr is also inherited by the derived

classes and will point to the virtual table of the derived class.

The diagram 2.2 illustrated the just described mechanism.

Figure 2.2: Dynamic Dispatch Mechanism

If there were an instance d of the derived class D and the function f1 were to be called, the

call would be handled by dereferencing d’s vptr, looking up the entry for f1 in the virtual table

and dereferencing that pointer to actually call the desired function.

2.2 Link-Time Polymorphism

Another possible approach for implementing an interface is through the use of link-time

polymorphism.

1

vtbls are not de�ned by the C++ standard. The implementation of dynamic dispatch can be compiler speci�c.
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2 Approaches

Like the name points out the selection of a certain implementation happens at the linking

stage.

One possible scenario for this approach could be the code production for two di�erent

systems, one with expensive, high-performance components and one with cheaper, low perfor-

mance components. And each component requires a di�erent implementation.

This approach uses one class de�nition that serves both components (as an ’interface’). For

each component an implementation of the ’interface’ is written and compiled separately.

Depending on which implementation is needed or rather which component is used for the

desired system, one of the separately compiled sources is linked with the main program.

2.3 Compile-Time Polymorphism

The last possibility to implement an interface is done by the use of compile-time polymorphism.

2.3.1 Implicit Interface

One way to achieve this is by using two or more classes that support the same implicit interface.

An implicit interface is de�ned and each concrete implementation is it’s own independent

class. The ’interface’ header �le includes the header �les from all implementations.

With the help of compile-time information, such as the size of a pointer (16, 32, 64 bit), a

decision can be made on which implementation to use.

Computed typedefs can then be used to determine a certain implementation and set the

type that is later used to instantiate the required object.

2.3.2 Curiously Recurring Template Pa�ern (CRTP)

An alternative possibility to implement an interface through the use of compile-time polymor-

phism is the Curiously Recurring Template Pattern (CRTP).

This pattern consists of a base class, the ’interface’ (see listing 2.2), that is implemented by

the derived classes like this:

class CRTPImplementation : public CRTPInterface<CRTPImplementation> { . . . }

5



2 Approaches

So far the process looks very similar to that of the dynamic implementation, the only

di�erence is that no virtual functions are needed. The base class gets information on the real

type of the derived class through a class template (line 1). That way the right function can be

called without the need for virtual tables and dynamic dispatch.

1 template <typename Implementation>
2 class CRTPInterface {
3 public:
4 void incrementCounter(const uint64_t n) {
5 impl().incrementCounter(n);
6 }
7

8 uint64_t getCounter() {
9 return impl().getCounter();

10 }
11 private:
12 Implementation& impl() {
13 return *static_cast<Implementation*>(this);
14 }
15 };

Listing 2.2: CRTPInterface.hpp

At compile-time a cast to the type of the derived class can safely be done (line 13) and

functions of the derived class can be called directly (no dynamic dispatch needed).

This approach achieves a similar e�ect as the use of inheritance and virtual function, without

the cost of the dynamic dispatch, but also with the loss of some �exibility, because with CRTP

the programmer has to decide already at compile-time which implementation to use.

6



3 Comparing the Approaches

From the chapter Approaches it is already known that a certain approach has to be implemented

when the iselection of the implementation to use is only available at a certain point in the

process (see table 2.1).

This chapter compares the di�erent approaches with regard to their presumably runtime

performance and memory usage at di�erent compiler optimization levels.

In the following sections the dynamic approach (see section 2.1) and the Curiously Recurring

Template Pattern (see section 2.3.2) will be compared to a ’normal’ implementation (simple class

with no virtual calls). The ’normal’ implementation should behave similar to the approaches

suggested in section 2.2 and 2.3.1.

3.1 Runtime Performance

In order to estimate the runtime cost of each approach a tool called callgrind will be used.

Callgrind, a tool from the valgrind
1

tool collection, is a pro�ling tool that gathers information

of the call history among methods and functions by generating a call graph.

A call graph is a directed graph that shows calling relationships between methods or functions

of a program.

An example can bee seen in �gure 3.1. The nodes represent methods or functions that are

reachable within the program. The percentage in each box represents the time the program

spends in that function.

The directed edges indicate the relationship between the functions. An edge is drawn from

function main to function run_normal, because a call site in the function main calls the function

run_normal. The numbers at each edge represent the number of times the function is called in

the program �ow.

1

Valgrind is a tool collection for dynamically analyzing software. url:www.valgrind.org
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3 Comparing the Approaches

Figure 3.1: Call graph for the normal implementation at optimization level 0

In order to analyze the program valgrind lets the program run not directly on the host CPU,

but in a virtual machine with a just-in-time compiler. That way code can be analyzed by the

valgrind tools.

The following listing (3.1) gives an idea of the main function that was used for to each

approach to collect the test data with callgrind.

1 const unsigned N = 5000;
2

3 void function(Approach* obj) {
4 for (unsigned i = 0; i < N; ++i) {
5 for (unsigned j = 0; j < i; ++j) {
6 obj->incrementCounter(j);
7 }
8 }
9 }

Listing 3.1: Sample method for test runs

The diagram 3.2 is based on data from the callgrind analysis of each approach at di�erent

compiler optimization levels.

The y-axis represents the total number of instructions used by the program determined

during the the callgrind analysis. In this speci�c case the more instructions a program has

to execute the more time it will need to �nish the task. Therefore a program that needs less

instructions to solve the same problem as another program will be faster. The x-axis displays

8



3 Comparing the Approaches

the compiler optimization level. For this analysis GCC (GNU Compiler Collection), version

5.2.0 (released July 16, 2015) was used.

The �rst bar at each optimization level represents the dynamic approach using inheri-

tance an virtual functions, the second bar the CRTP approach and the third bar the ’normal’

implementation.

O0 O1 O2 O3

1

2

3

4

5

6

·108

GCC Optimization Options (version 5.2.0)
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Figure 3.2: A�ect of GCC Optimization Options (version 5.2.0) on the approaches

Overall the diagram (3.2) reveals that at a low optimization level there is a huge di�erence

between the approaches and with rising optimization levels the di�erences between the ap-

proaches decrease to the point where they are almost gone.

The greatest di�erence can be seen at optimization level 0, which is the default optimization

level in GCC
2
. At this stage the normal implementation is the fastest leaving the other ap-

2

At level 0 not all optimization �ag are disabled, a few optimizations are already in use. ’gcc -Olevel -Q –help=

optimizers’ shows which optimization �ags are enabled at the chosen optimization level
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3 Comparing the Approaches

proaches behind.

The dynamic approach has a slight overhead in comparison to the normal implementation,

because as described in section 2.1 the correct function to call has to be identi�ed by the

dynamic dispatch mechanism, which is done at runtime an thus requires some computation

time.

The CRTP approach has an even greater overhead. These additional instruction are not

needed because of some dynamic dispatch code that has to determine the right function at

runtime, because through the template this is already known at compile-time, but at level 0

there are a lot more functions to call until the actual function is executed.

The following lists shows the function calls that have to be made:

• CRTPInterface<CRTPImplementation>::incrementCounter(...)

– CRTPInterface<CRTPImplementation>::impl()

– CRTPImplementation::incrementCounter(...)

And this chain of function calls result in a far greater overhead leaving the CRTP approach

behind.

At optimization level 1 and higher the normal and the CRTP approach seem to use about

the same number of instructions and the dynamic approach still has some overhead, but it is

also decreasing.

Important to notice is that all approaches have reduced their total number of instructions

signi�cantly.

Having a closer look, the callgrind analysis reveals that the actual function of the concrete

implementation (ConcreteImplementation::incrementCounter(...)) is no longer called, only the

function body is executed, which is counter += n;.

The reason for this behavior are mostly caused two sets of compiler optimization �ags. One

set of �ags is known as inlining and the other is called devirtualization. The next subsection

3.1.1 will describe these mechanisms in more detail.

This example shows that if all important function calls are suitable for being optimized

by the compiler that at optimization level 2 there is almost no more di�erence between the

10



3 Comparing the Approaches

di�erent approaches.

To sum it up:

If the situation is not ideal, the approach that will probably perform the best is the normal

implementation that uses a simple class with no virtual calls, because of the missing overhead

right from the beginning.

In case of the dynamic approach there will probably be still some overhead for the dynamic

dispatch, but as the the next section 3.1.1 will show, devirtualization has become quite successful

and can eliminate quite a lot of virtual calls.

The CRTP Implementation su�ered the most from the loss of optimization mechanisms and

relies heavily on inlining by the compiler to perform properly and be competitive.

3.1.1 GCC Optimization Flags

This section will concentrate on the compiler optimization known as inlining and devirtualiza-

tion.

Inlining

Inlining is a optimization mechanism that replaces the function call site with the body of the

called function. This makes the execution usually faster, because the overhead on calling the

function was eliminated. Besides the fact that inlining usually speeds up the program, it allows

further optimization mechanism to be applied.

If any of the argument values of the function are constant, it may lead to a simpli�cation

of the function code at compile-time, so that only a part of the function’s code need to be

inserted at the call site and thereby an increase in the program’s size caused by can be curtailed.

Functions that are not suitable to be inlined are those that make use of a variable number of

arguments (also called variadic functions), the alloca() function, computed goto, nonlocal goto

and the use of nested functions.

The programmer can use the keyword inline to tell the compiler that inlining is desired, but

the compiler is not required by any means to follow that request.

11



3 Comparing the Approaches

With inlining usually also comes an increase in code size because of the duplication of the

body of a function. So when it comes to the need of reduction of code size, like necessary in

some embedded system’s code, inline may not be used.

Inlining can also slow down the program instead of speeding it up. For example when large

functions are inlined in a lot of places and the working set of the program does not �t anymore

in one level (e.g. L1-cache) of the memory hierarchy.

Devirtualization

Devirtualization is a rather new mechanism and was �rst supported in the GCC version 4.7.0.

When the �ag devirtualize is enabled the compiler tries to convert virtual function calls to

direct function calls, to do this the compiler has to determine the type of object which will call

the function. The compiler will try to �nd all possible object types at the call site. If this set

only contains one type or all types in the set use the same implementation the call site can be

devirtualized.

Since GCC version 4.9.0 another �ag called devirtualize-speculatively was introduced, which

tries to convert virtual function calls to speculative direct function calls.

This mechanism will analyze the type inheritance graph and tries to identify for a certain

function call a set of possible likely targets. If the set is small the function call can be changed

to a conditional deciding between a direct and an indirect call. The good thing is that through

the use of speculative calls more optimization mechanisms, like inlining, are possible.

In GCC version 5.2.0 devirtualization was improved even more and it was stated in the

o�cial change log that about 50% of the virtual calls in Firefox were speculatively devirtualized

during link-time optimization.

3.1.2 Measurement of execution time of the Approaches

The last section concentrated on the evaluation of runtime cost via the total number of

instructions that a program needs to solve a problem. It was claimed that in this case the

greater the number of instructions a program needs the more computation time it requires.

To verify this and to get some real time measurements the same test was run on a Raspberry

Pi 1, version B, revision 2. All unnecessary services were turned o� and no desktop environ-

ment was used in order to minimize interferences by other processes. In order to get more

12



3 Comparing the Approaches

precise data each of the twelve time measurement tests were done 11 times and the median

was used as a test result.

The table 3.1 presents the results of the execution on the Raspberry Pi.

Implementation O0 O1 O2 O3

Dynamic Interface 1192 532 531 368

CRTP 1575 366 365 370

Normal 820 365 367 367

Table 3.1: Execution time in milliseconds

The data from table 3.1 and the data from the callgrind analysis (see �gure 3.2) appear to be

similar. This strengthens the claim that in this case their is a direct correlation between the

total numbers of instructions and the programs speed.

When looking at the same test compiled with GCC version 4.6.3 (no devirtualization support)

and run under the same circumstances the CRTP approach is at optimization level 2 about 3x

faster than the dynamic approach. The reason is that the virtual calls could not be transformed

to direct calls and therefore other optimizations like inlining could not be applied.

This shows that there has been a huge advancement in the compiler optimization features

when it comes to the usage of virtual functions.

3.2 Memory Usage

Besides a programs runtime cost, another important indicator is a program’s memory usage.

With an increase in the program’s performance through compiler optimization, for example

through inlining, the memory size of a program generally also increases. For example when a

larger function is called at di�erent call sites and is inlined each time. This way the function

body’s code is duplicated many times. The analysis performed in section 3.1 (Runtime Perfor-

mance) was a very simple test because the function used was very small, was only called at a

single call site and therefore likely to be inlined.

In other scenarios were there could be more derived classes or concrete implementations

the situation could be di�erent.

13



3 Comparing the Approaches

The approaches that just use a simple class with no virtual calls (2.2 and 2.3.1) and the actual

class is chosen at link-time or compile-time should not use more memory, because one class is

simply replaced by the other.

In the case of the dynamic approach with inheritance and virtual functions (2.1) each class

has an additional virtual pointer (vptr) that points to the virtual table, which also exists for

every class (base and derived classes).

Figure 3.3 shows an extract from the class hierarchy dump for the dynamic implementation.

Figure 3.3: Extract from class hierarchy dump of dynamic implementation

In the CRTP approach each derived class implements the base class with a speci�c template

that holds the information about the type of the derived class. But this also means that

CRTPInterface<DerivedA> and CRTPInterface<DerivedB> are two di�erent classes.

If a program’s size is crucial, for example in code for embedded systems, CRTP is an approach

that should probably be avoided and the simple class with computed typedefs approach (see

section 2.3.1) should be preferred.

14



4 Conclusion

Sometimes the programmer is forced to use a certain approach, because the selection of a

certain implementation can only be done at a certain point, for example at runtime when

di�erent instances of derived classes could be assigned to the same base class object’s pointer

depending on the program’s progression. Because the selection can only be done at runtime

the dynamic approach is required.

The table 4.1 indicates when the use of a certain approach is necessary.

Decision only possible at . . . Implementation to use . . . Remarks

Run-Time Dynamic Interface (2.1) A

Link-Time Separately compiled Sources (2.2) -

Compile-Time Implicit Interface (2.3.1) -

Compile-Time CRTP (2.3.2) B

Table 4.1: Necessity to use a certain interface implementation (II)

A The good news is that in recent time the overhead that comes with an implementation

using virtual functions could be reduce signi�cantly with the use of devirtualization.

Depending on the complexity of the call site’s code, it may be the case that not all virtual

calls can be devirtualized.

B The CRTP may not be suitable in embedded environments, because of the possibility of

increased code size. As seen in the analysis the CRTP relies heavily on the compiler

optimization inlining. This could lead to an increase in code size, if larger functions are

called at di�erent call sites. Furthermore di�erent implementation will also increase the

code size, because every implementation will have it’s own base class because the base

class is a template class and the template is the type of the derived class.
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