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Kurzzusammenfassung
In diesem Dokument wird der Ein�uss der Verwendung von mit C++11 und C++14 neu ein-

geführten Erweiterungen auf die in C++ implementierten Entwurfsmuster Fabrik Methoden

Muster und Zustandsmuster untersucht und die Auswirkung von zeitlichem Verhalten, Spei-

cherverbrauch und Code Qualität im direkten Vergleich zu etablierten Implementationsarten

festgestellt.
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Abstract
Within this document the impact of the use of C++11 and C++14 facilities on the in C++

implemented design patterns factory method pattern and state pattern will be analysed to

examine the e�ect on timing, memory consumption and code quality compared with the

established ways of implementation.
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1 Introduction

Desing patterns provide solutions for many challenges within software development. Em-

bedded reactive systems show many of these challenges regarding execution time, memory

consumption or safety critical behavior among others. Many sources o�er well designed ways

of implementations in C++ for commonly used design patterns. But most of these sources avoid

the use of the new C++11 and C++14 standards with no named reason. The ambition of this

document is the implementation of the factory method pattern and the state pattern as a repre-

sentative set of design patterns which are commonly used within the development of embedded

software with the use of the new C++ facilities to identify advantages and disadvantages of

the use of the new C++ standards and �nd out whether it is bene�cial or not.

1.1 Structure

The document’s structure is devided into three main parts. The �rst part, including chapter 1

to 4, provides a general overview and introduction of the main topics for creating a same basis

of knowledge regarding embedded reactive systems, embedded software development as well

as design patterns.

Following this, the main body is divided into the factory method pattern and the state pattern.

Each of these chapters explains several ways of implementation for both C++03 and C++11

including the particular advantages and disatvantages, an introduction of the used facilities of

the new C++ standards and an analysis of the particular ways of implementation.

Chapter 7 and 8 �nalize the work by summarize the results of the analysis and providing an

opinion and a perspective based on the summary.
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2 Embedded Reactive Systems

Our everyday life is supported by electronic components in almosed every aspect. A lot

of these electronic components include an embedded reactive system. More than 95% of

software systems are actually embedded. (cf. Oshana und Kraeling, 2013, 2) But what are

the characteristics of an embedded system and what makes it reactive? Embedded systems

are the counterpart of Personal Computer (PC), notebooks and workstations. An embedded

system is a computing component which is, for the user almosed invisible, embedded within

electronic devices. (cf. Gessler, 2014, 8). Unlike PCs, notebooks and workstations for embedded

systems usually exist strict requirements for cost, energy consumption and size. The de�nition

"a reactive system is a system that, when switched on, is able to create desired e�ects in its

environment by enabling, enforcing or preventing events in the environment." (Wieringa, 2003,

5) gives an idea of how embedded systems and reactive systems merge to one powerful system.

Furthermore a reactive system is de�ned with a number of characteristics:

• The system is continously interacting with its environment.

• The process by which the reactive system interacts with its environment is usually

nonterminating.

• In its interaction with the environment, the reactive system will respond to external

stimuli as and when they occur.

• Responses of the reactive system are dependent on the current state of the system and

the external stimuli that it responds to.

• The response consists of enabling, enforcing or prohibiting communication of behavior

in its environment.

• The behavior of a reactive system consists often of a number of interacting processes

that operate in parallel.

• Often a reactive system must operate in real-time and is under stringent time require-

ments. (cf. Wieringa, 2003, 5-6)

2



2 Embedded Reactive Systems

So in one sentence, beeing reactive gives an embedded system the ability to interact with its

environment in both directions.

Figure 2.1: Components of an elevator (Electri-

calKnowhow, 2013)

The list of embedded reactive systems is end-

less. Beginning from the co�ee machine in

the morning, which receives the information

what kind of co�ee the user wants and grinds

the right amount of co�ee beans, over the

tra�c lights on the way to work which re-

ceive the request of passing the streets and

stops the cars with a red signal, up to the

television in the evening which receives the

information of a remote control and switches

the channel.

A reactive system can be divided into three

basic parts. The system itself, the environ-

ment and the communication channel. The

system is the processing unit which conti-

nously keeps the reactive system running. It

receives messages and responds to them ei-

ther internally or by sending messages. The

environment is the part of the world which

is relevant for the reactive system. For inter-

acting with the environment both, the environment and the system, need an interface. And

last but not least the communication channel connects these interfaces and transports the

messages between the components. This could be a connection between the interface of the

environment and the system as well as between several systems. (cf. Wieringa, 2003, 11-19)

The example of an elevator gives a deeper understanding of the components of an embedded

reactive system and how they do interact with each other. (Figure 2.1) The environment of the

system includes the elevator car and the area around the elevator. Its interface is, of course the

panel of buttons inside of the car and maybe a display which displays the current �oor and the

direction of the car. But the interface of the environment includes much more than just a panel

and a display! A number of sensors are permanently observating the environment to detect

for example doorblocking objects and other safety-critical aspects. The machine drive is also

3



2 Embedded Reactive Systems

part of the environment’s interface. For the user of the elevator not reachable is the system

placed in a control cabinet. It usually contains a hardware interface for receiving and sending

messages through the communication channels. This includes the wires to the interface of the

environment as well as a communication bus between two or more elevator systems to work

e�ciently together. The mentioned characteristics of an embedded reactive system have an

direct in�uence on the software architecture of the system.

2.1 So�ware Architecture

For designing a good software architecture, designers have to consider a lot of rules and

principles. One major principle for every software designer is Keep It Small and Simple! a

simple software architecture is a win situation for all stakeholders. It reduces unnecessary

complexity, the maintainability and expandability increases and the sourcecode usually is

smaller. Another rule that should be considered for a good design is a balanced expectation of

changes. Time brings changes and changes bring new requirements. A software which can be

easily changed is a good software. But it is not a good idea to design a "silver bullet" which

�ts into any possible case. The software designer has to identify the possibility of changes

to �nd a good balance between customizability and �xedness. A third and no less important

principle is the quality. Within the designing process the software designer has to consider

possible failure situations and pre-de�ne ways to avoid or manage them. (cf. Starke, 2015, 62 -

64) No person would use an elevator which has no strategy implemented in case when the

cables break. But does the system also need a strategy in case when the display doesn’t work?

Probably not. Of course this is just a sur�cial overview of the considerations within a design

process but it gives and idea of the complexity of designing a good software architecture for

embedded reactive systems.

During the designing process of an embedded reactive system software- and hadwarearchitects

must work hand in hand. This is necessary because within embedded reactive systems the

hardware and software take responsibility for core functions of the system. (cf. Starke, 2015,

31 - 32) Usually an embedded reactive system has to meet high requirements. The user of an

elevator assumes that brakes are working in the right moment, that the door opens when it

should open and stays closed when it should not open. Systems with that kind of constraints

in time are called real-time systems.

4



2 Embedded Reactive Systems

One concept of structuring the software of an embedded reactive system is the super loop

architecture. The super loop architecture is a very common and straightforward way of

implementing an embedded reactive system. Basically the super loop architecture can be

divided into two phases. In the �rst phase the system will be initialized. After completing the

initialization routines the system enters the second phase, the in�nite loop. This loop contains

every task and event. It processes each of them one by one and on the end it jumps back to the

top of the loop where it starts to process the tasks again. A super loop architecture is only an

option when the tasks and events can be processed in predictable time. Adapted variants of

the super loop architecture like the power-safe super loop exist to make the task scheduling

requirements more consistent with the loop execution time. (cf. Oshana und Kraeling, 2013, 24)

As example names Oshana an embedded sys-

Figure 2.2: Design composition of embedded

systems (Walls, 2012, 50)

tem with an average loop time of 1ms, which

needs to check a certain input only once per

second. In this example it is not advisable

to execute the loop 999 times before the one

time comes where the input is actually rele-

vant. In this case a delay time will be added to

the super loop which reduced the execution

time to an appropriate level.

In the last decades the hardware design of

embedded systems has become more complex

and the amount of software has increased

drastically and takes up to 70 - 80% of the total

design e�ort. (Figure 2.2) (cf. Walls, 2012, 50)

The embedded systems model (also known

as layered software architecture) (Figure 2.3)

is an design concept which can be used for more complex hardware and software designs.

The architecture contains three main layer. An hardware abstraction layer (HAL), a system

software layer and an application layer. (cf. Noergaard, 2005, 12) Two basic functions of the

HAL are decoupling the hardware from the application and providing legible sourcecode. The

I/O interface of di�erent hardware components are usually not consistent. Every hardware

component brings its own unique interface. The HAL combines and encapsulates the I/O calls

within methods. These methods are used by the application layer for work with the hardware.

5



2 Embedded Reactive Systems

Figure 2.3: Embedded systems model (Noergaard, 2005, 12)

Changes of the hardware require an update of the HAL, but the whole application layer can stay

without a single change. Or in other words, the portability of the application software increases.

The system software layer allows software designs with more than one process running at the

same time. Responsibilities and tasks can be divided and processed in parallel. For this, the

system software layer must contain at least a simple scheduler. But also operating systems

including ressource- and memory management and channels for interprocess communication

are possible.
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3 C++ for Embedded So�ware

The default programming language for embedded software development is C. Typical ar-

guments agaist C++ were an excessive memory use and real-time overhead. The �rst C++

compiler, which name was Cfront and was written by Bjarne Soustrup, was just a preprocessor

to convert the C++ code into C code. (cf. Stroustrup, 2016b) At this time these arguments

may have been right, but nowadays the common compiler have improved in quality and

functionality. So the arguments against C++ mostly became obsolete. (cf. Walls, 2012, P. 179)

In fact, C++ brings a huge number of bene�ts which can’t be named in every single detail.

Some important bene�ts are

• Object-Oriented Programming (OOP)
C++ is an extended variant of the C language. The extensions provide object-oriented

programming facilities. The initial version of C++ was called "C with Classes". OOP

opens the designer of the software new ways in managing the development process and

structuring the sourcecode. As mentioned in chapter 2.1 the amount of software has

increased drastically. Using Classes increases the maintainability and the reusability of

the sourcecode.

• Inheritance and Polymorphism
In combination with OOP the concept of inheritance allows to de�ne new derived classes

from already existing base classes. This increases the reusability of the sourcecode and

reduces redundancy. Polymorphism extends the concept of inheritance with the ability

of creating pointer pointing at derived classes which are type-compatible with pointer

pointing at base classes. Member functions of the base class become virtual and can be

rede�ned by the derived class. (cf. Kirch und Prinz, 2015)

• Exception handling
The programming language C does not provide any facilities to deal with error conditions.

The widely used convention of handling a global variable named errno has several

problems. For example, checking errno for each library function call blows up the code

and is impractical. The user of a library must be aware of when to check errno. C++

7



3 C++ for Embedded Software

provides a simple exception handling. The function of a library detects an error and

throws an exception. The exception handler catches the exception and reacts in an

appropriate way. Of course the exception handling of C++ is not the solution for every

possible problem. In fact, the exception handling was not speci�cally designed for use

with embedded systems. Compilers which support exception handling in C++ tend to

create additional code, regardless whether an exception occurs or not. This unexpected

overhead could cause other problems for microprocessors with limited memory. (cf.

Walls, 2012, P. 200 - 206)

3.1 Modern C++ Standards

C++ is standardized by ISO (International Organization for Standardization) with ISO/IEC

14882:1998 (C++98) as default standard in 1998. In 2003 C++03 replaced with minor changes

the C++98 standard and was up to 2011 the relevant standard. in September 2011 the commitee

released the ISO/IEC 14882:2011 (C++11) standard including a lot of new facilities for the C++

language which was replaced by C++14 in December 2014. (cf. Stroustrup, 2016a) For an easier

distinction from now on applies the keyword C++11 representative for the C++11 and the

C++14 standard within this document.

Figure 3.1: Use of C++11 facilities
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3 C++ for Embedded Software

The use of the C++11 standard within projects is still not common. A survey has shown that

within career related software projects more than 40% of the C++ programmer haven’t make

use of the new C++ facilities yet (Figure 3.1) and within private software projects the less

than 50% of the C++ programmer make use of C++11. A survey with 30 participants is not a

representative result but it gives an idea of the tendency. Guidelines for C++11 recommend

the use of smart pointers instead raw pointers. But not only smart pointers have an impact

on the sourcecode. Also the use initializer lists, the type inference with the keyword auto

and the range-based for-loop iteration changing the look of modern sourcecode. Switching

from C++03 to C++11 within a big project could cause a huge workload of refactoring to avoid

multiple programming styles. 9 of the 16 C++11 programmer mentioned they would spend

working time for updating older sourcecode to the new standards.
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4 Design Pa�ern

One bene�t of C++ as an OOP language, which was not mentioned yet, is the suitability of

using design patterns within the development process. The book ’Design Patterns: Elements

of Reusable Object-Oriented Software’ is a basic catalog of useful design patterns and was

published by the authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. The

authors are often just known as Gang of Four (GoF). According to GoF every design pattern

describes a problem and the core of the solution for the problem in a way where the solution

can be reused million times without redundancy. (cf. Gamma u. a., 2015, 27 - 28) A design

pattern contains four characteristics:

• A signi�cant name which refers to problem, solution as well as the e�ect of the design

patterns.

• The problem in which the use of the design pattern might be helpful. This problem

de�nes speci�c constraints and requirements for architecture, behavior and algorithms.

• The solution for the problem describes an abstract de�nition of the architectural design

for solving the problem.

• The consequences and e�ects of the usage of the design pattern. This includes advantages

and disatvantages in many aspects like memory usage, timing, �exibility, portability,

extensibility or reusability. Some of them are measurable and comparable, others are

only visible within the work of the software architect.

Usually the use of design patterns e�ect a combination of advantages and disatvantages, so

the software architect must decide whether the use is reasonable or not. As the name suggests,

a design pattern is only a pattern. The solution does not describe or suggest a concrete

implementation. No special facilities of particular programming languages are involved in the

solution of the problem, which allows the use of design patterns for nearly every imperative

programming language. In fact, unlike the �rst assumption of this chapter that the suitability

of using design patterns would be a bene�t of OOP languages, desing patterns are also available

for the use with procedural programming languages like C. The book ’Design Patterns for
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Embedded Systems in C’, written by Bruce Powel Douglass, o�ers a deep insight of the use

of design patterns for the programming language C. Nevertheless the bene�cial connection

between OOP languages and design patterns is ubiquitous. Not least because most of the

design patterns presented by GoF assume an architectural design with objects. (cf. Gamma

u. a., 2015, 29) GoF classi�es design patterns in its purpose and its scope. The purpose can be

categorized in:

• Creational patterns: with focus on the creation of new objects.

• Structural patterns: de�ne the composition of classes and objects.

• Behavioral patterns: characterize the way of interaction between classes and objects.

In addition, the scope of a design pattern can be categorized in:

• Class based patterns: in�uence the relation between classes, which is static and already

determined at compile time.

• Object based patterns: in�uence the relation between objects at runtime.

Within the survey, mentioned in section 3.1, the 30 participants were asked to name up to

three of their most frequently used design patterns. The result shows a wide variety of design

patterns with the singleton pattern as favourite. (Figure 4.1)
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Figure 4.1: Frequently used design patterns

4.1 Design Pa�erns on Embedded Systems

Design patterns can improve the software architecture of embedded systems in many ways.

As mentioned in chapter 2 an embedded system interacts with its environment. In many cases

the behavior of the system depends on information received from the environment or other

systems. During the development process the designer does only know what kind of messages

could come in. Arrival time, occurrences and the order of the messages are unknown. The

use of design patterns like the factory method pattern or the strategy pattern provide a more

dynamic behavior of the system. Constraints in time or availability of memory require e�cient

software which can be reached with design patterns like the �yweight pattern. For many more

problems and challenges within the design process of an embedded system appropriate design

patterns are available.

4.2 Implementation in C++11

Literatur and the internet o�er many examples of how to implement concrete design patterns

in C++. Few of these examples use C++11 facilities. For example the actual release of GoF from

2015 also includes concrete implementations in C++ and non of them include the facilities

released with C++11. A reason for this rarely representation within concrete examples is hard
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to �nd. The following selected design patterns shall give an deeper understanding of how does

C++11 have an impact on the implementation of design patterns in C++ for �nding an answer

for the question whether C++11 is bene�cial or not.
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5 Factory Method Pa�ern

The factory method pattern is categorized as an creational-, object based pattern. One motiva-

tion for using the factory method pattern is when external information in�uence the demand

of objects. During the designing process only the time when an object is needed is known,

but not what kind of object. Without the factory method pattern the software designer could

implement a conditional statement mechanism like shown in list 5.1 to cover every possible

case.

Listing 5.1: Switch-case-selection

1 ...
2 Shape* neededObj;
3 switch(externalSignal) {
4 case 0:
5 neededObj = new Triangle();
6 break;
7 case 1:
8 neededObj = new Rectangle();
9 break;

10 case 2:
11 neededObj = new Circle();
12 break;
13 }
14 ...

If this selection occurs only once in the whole sourcecode and the number of available objects

is small, there is no further demand for refactoring. In projects where the selection occurs on

several places, the switch-case-selection can be replaced by a factory call.
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Figure 5.1: Factory method pattern UML

Instead of a direct instantiation, the client delegates the request of an object to the factory. The

factory instantiates the particular object and returns it to the client. For the concrete classes

either an interface or an (abstract) base class is mandatory like shown in �gure 5.1. In this

example Shape is the base class of every instantiable sub class. The factory method pattern

can be implemented in various di�erent versions. The most straightforward way is probably

to move the switch-case-selection, shown in listing 5.1, to the factory.
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5.1 Conditional Statement Implementation

Listing 5.2: Conditional statement factory C++03

1 #include "Shape.h"
2

3 class Factory {
4 public:
5 Factory() {}
6 ~Factory() {}
7

8 Shape* getInstance(int idx) {
9 switch (idx) {

10 case 0: return new Circle();
11 case 1: return new Triangle();
12 case 2: return new Rectangle();
13 default: return 0;
14 }
15 }
16 };

This version of a factory has several advantages. Firstly, it is easy to read, to implement and to

extend. Another advantage is the performance of a switch-case-statement. Many compilers

compile the switch-case-statement to a jump table. The result is a performance of T(n) = Θ(1)

for �nding the requested branch. (cf. Ding, 2012) For getting a concrete object, the client uses

the factory like shown in listing 5.3.

Listing 5.3: Factory call C++03

1 int main(int argc, char** argv) {
2 Factory factory;
3

4 Shape* myObject = factory.getInstance(externalSignal);
5

6 return 1;
7 }

The major disadvantage of this implementation is the hard-coded behavior which provides no

�exibility and portability. The factory cannot be used with other classes without recompiling.

If a projects needs more than one factory for di�erent classes, each of these factories need to be
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implemented for its own. The implementation in C++11 of the conditional statement factory is

very similar except for the replacement of all raw pointers by smart pointers. (Listing 5.4)

Listing 5.4: Conditional statement factory C++11

1 #include "Shape.h"
2 #include <memory>
3

4 using namespace std;
5

6 class Factory {
7 public:
8 Factory() {}
9 ~Factory() {}

10

11 unique_ptr<Shape> getInstance(int idx) {
12 switch (idx) {
13 case 0: return make_unique<Circle>();
14 case 1: return make_unique<Triangle>();
15 case 2: return make_unique<Rectangle>();
16 default: return 0;
17 }
18 }
19 };

5.1.1 Smart Pointer

As mentioned in section 3.1 guidelines for C++11 recommend the use of smart pointers instead

of raw pointers. The main reason for this is the tendency of getting memory leaks with raw

pointers. Opportunities for getting memory leaks vary. For example if the software designer

allocates memory with new and forgets to call delete before leaving the scope, only the pointer

will be deleted. The allocated memory still exists in the heap. Another fatal situation can

happen when an exception occurs before calling the delete. The software designer must take

care of this situation. (cf. Kirch und Prinz, 2015, 848 - 849) With smart pointers such situations

become more safe. Instead of directly allocating memory the user creates a smart pointer

which manages the dynamic allocated objects or data types. C++11 provides three signi�cant

types of smart pointers. The Unique pointer, shared pointer and weak pointer.
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Unique Pointer (unique_ptr)

Example: unique_ptr<int> myUniquePtr = make_unique<int>(42);

The destructor of a unique pointer deletes the managed object, regardless whether another

pointer refers to that object or not. Therefore a unique pointer does not have a copy constructer,

so that sharing the membership of the managed object is not possible. The only way to pass the

membership is by using the move constructor. With the move constructor the current unique

pointer loses the membership and the new unique pointer is the new unique membership

holder of the managed object. Unique pointer are useful for managing ressources like text �les.

(cf. Kirch und Prinz, 2015, 850 - 853) The size of a unique pointer is 8 bytes
1

for the reference

to the managed object.

Shared Pointer (shared_ptr)

Example: shared_ptr<int> mySharedPtr = make_shared<int>(42);

Unlike unique pointers, share pointers allow to share the membership of the managed object.

To guarantee that the managed object will not be destroyed as long as at least one pointer refers

to that, and will be destroyed when the last pointer stops refering to the managed object, the

shared pointer uses a reference counter. The reference counter increases when a new pointer

refers to the managed object and decreases when a pointer stops refering to the managed

object. If the reference counter becomes zero, the object will be destroyed. A disadvantage of

a shared pointer compared with a raw pointer is an overhead of allocation time because in

addition to the memory for the managed object the shared pointer must also allocate memory

for the reference counter. The make_shared<>() function reduces this overhead by allocating

the memory in one block. (cf. Kirch und Prinz, 2015, 854 - 861) The size of a shared pointer is

16 bytes. 8 bytes for the reference to the managed object and 8 bytes for the reference to the

reference counter. In addition to this the shared pointer also allocates 8 bytes for the reference

counter.

Weak Pointer (weak_ptr)

Example: weak_ptr<int> myWeakPtr = mySharedPtr;

A weak pointer can only manage objects which are already managed by at least one shared

pointer. It has no e�ect on the reference counter. This means if the last shared pointer stops

1

Every memory size declaration within this document bases on a 64bit system.

18



5 Factory Method Pattern

refering to the managed object, the object will be destroyed and the weak pointer refers to

unallocated memory. Weak pointers are useful when several objects have a direct or indirect

reference to each other. In this case the reference counter cannot reach zero. Using weak

pointer instead, removes the dependency of these objects. (cf. Kirch und Prinz, 2015, 862 - 863)

The size of the weak pointer is 16 bytes. As already mentioned the weak pointer has no e�ect

on the reference counter, but it provides the option for a cast to a shared pointer. In this case

it is necessary to know about the reference counter. Therefore the weak pointer contains an

reference to the reference counter.

5.1.2 Type Inference with auto

With C++11 not only the factory has changed. A look at the use of the factory (listing 5.5)

shows that the explicit type declaration was replaced by the placeholder auto. auto is part of

the generic programming facilities of C++. As long as the compiler can determine the correct

data type at compile time, auto can be used for type declaration as well as for the declaration

as a return-type. (cf. Kirch und Prinz, 2015, 210 - 211) Type inference bene�ts the maintaining

and modifying process of the sourcecode.

Listing 5.5: Factory call C++11

1 int main(int argc, char** argv) {
2 Factory factory;
3

4 auto myObject = factory.getInstance(externalSignal);
5

6 return 1;
7 }

5.1.3 Timing

Figure 5.2 compares the implementation of listing 5.2 with listing 5.4. Each factory manages

100 classes. For the instantiation of 10,000 objects the C++03 version needs about 0.72ms

and the C++11 version needs about 5.1ms. For the instantiation of 100,000,000 objects the

C++03 version needs about 4.3 seconds and the C++11 version needs about 35.9 seconds. The

complexity of both versions is constant. T(N) = Θ(1).
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Figure 5.2: Conditional statement factory timing

Category Percentage Time in s
Factory 19.18 0.81

Shape 61.18 2.60

Main 17.27 0.73

Other 2.37 0.10

Table 5.1: Conditional statement factory timing distribution C++03

Category Percentage Time in s
Factoy 1.33 0.47

Smart pointer 82.28 29.53

Shape 2.87 1.03

Main 2.82 1.01

Other 10.7 3.84

Table 5.2: Conditional statement factory timing distribution C++11
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The timing analysis, made with the C++ pro�ler gprof, gives an idea of the root of this overhead

of execution time. As shown in table 5.1 with about 61% and 2.6 seconds for 100,000,000 objects

Shape causes the biggest part of the C++03 implementation. Within the C++11 implementation

table 5.2 shows that the use of smart pointers has a big e�ect on the execution time. With

about 82% and 29.5 secondes for 100,000,000 objects the execution time for using smart pointers

is about 10 times as much as the time for Factory, Shape and main together. The amount of

operations within the C++11 implementation, which is not explicitly categorisable, takes about

10% and 3.8 seconds of the total execution time.

5.1.4 Memory Consumption

As shown in �gure 5.3 neither the C++03 implementation nor the C++11 implementation of

the factory cause an memory overhead. Depending on what kind of smart pointers will be

used within th C++11 implementation the heap memory overhead for every instantiated object

will be either 0 byte or 8 bytes.

Figure 5.3: Conditional statement factory memory consumption
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5.2 Clone Factory Implementation

A clone factory manages already instantiated objects. Therefore the factory needs a method

for adding objects at runtime. (Shown in �gure 5.4)

Figure 5.4: Factory method pattern UML including add() method

If the client requests an object, the factory creates a copy of its managed object and returns the

copy. An advantage of this implementation is the �exibility. Objects can be added and removed

at runtime. This allows to use the factory more dynamically and to instantiate more than one

factories with di�erent managed objects. A basic implementation is shown in listing 5.6.
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Listing 5.6: Clone factory implementation C++03

1 #include <vector>
2

3 using namespace std;
4

5 template<class Base>
6 class CloneFactory {
7 class Cloner {
8 public:
9 virtual Base* clone() const = 0;

10 const int idx;
11 virtual ~Cloner() {}
12 protected:
13 Cloner(int idx) :
14 idx(idx) {}
15 };
16

17 template<class T>
18 class ClonerT: public Cloner {
19 public:
20 ClonerT(const int idx, const T& obj) :
21 Cloner(idx), obj_(obj) {}
22

23 private:
24 virtual Base* clone() const {
25 return new T(obj_);
26 }
27 const T obj_;
28 };
29 public:
30 ~CloneFactory() {
31 for(unsigned int i=0; i<cloneList.size(); i++) {
32 delete cloneList[i];
33 }
34 }
35

36 template<class T>
37 void add(const T& obj, const int idx) {
38 cloneList.push_back(new ClonerT<T>(idx, obj));
39 }
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40

41 Base* getInstance(const int idx) const {
42 for(unsigned int i=0; i<cloneList.size(); i++) {
43 if(cloneList[i]->idx == idx) {
44 return cloneList[i]->clone();
45 }
46 }
47 return 0;
48 }
49

50 private:
51 vector<Cloner*> cloneList;
52 };

This implementation works with a helper class (Cloner) for managing the objects. By adding

an object the factory wrappes this object into a Cloner object and stores this within a vector

list. The Clone factory requires a consideration of modifying the copy constructor. (Listing 5.7)

For developing exception-safe code it is neccessary to consider the ownership policy ’Rule of

Three’. The Rule of Three says that if either the copy constructor, copy assignment operator or

the destructor of a class had to be de�ned by the software designer, then all of these three parts

have to be de�ned by the software designer. This makes copying objects error-prone because

every modi�cation of the object requires an update of the copy constructor, copy assignment

operator and destructor. The software designer also has to decide wheter a dynamic allocated

data type shall be copied as shallow copy or deep copy. A shallow copy copies the value of the

pointer. So both objects, the original object and the copy, will have a pointer to exactly the

same memory address. A deep copy allocates new memory and copies the value of the memory,

where the pointer refers to, to the new allocated memory. So both objects are pointing to

di�erent memory addresses.
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Listing 5.7: Rule of Three

1 #include <iostream>
2 #include "Shape.h"
3

4 using namespace std;
5 class Circle: public Shape {
6 public:
7 Circle() {
8 dynInt = new int(42);
9 }

10 ~Circle() { //Destructor
11 delete dynInt;
12 }
13

14 Circle(const Circle &obj) { //Copy constructor
15 //deep copy:
16 dynInt = new int(*obj.dynInt);
17

18 //shallow copy:
19 //dynInt = obj.dynInt;
20 }
21

22 void foo(void) {
23 cout << "Circle calls foo()" << endl;
24 }
25

26 int* dynInt;
27 private:
28 // Copy assignment operator
29 Circle& operator=(const Circle&) & = default;
30 };

Because of the instantiated objects, the clone factory implementation has a higher memory

consumption. The C++11 version of the clone factory (listing 5.8) implementation contains

minor changes.
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Listing 5.8: Clone factory implementation C++11

1 #include <memory>
2 #include <unordered_map>
3

4 using namespace std;
5

6 template<typename Super>
7 class CloneFactory {
8 class Cloner {
9 public:

10 virtual shared_ptr<Super> clone() const = 0;
11 const int idx;
12 virtual ~Cloner() {}
13 protected:
14 Cloner(int idx) :
15 idx(idx) {}
16 };
17

18 template<typename T>
19 class ClonerT: public Cloner {
20 public:
21 ClonerT() {}
22

23 ClonerT(int idx, const T& obj) :
24 Cloner(idx), obj_(obj) {}
25

26 private:
27 virtual shared_ptr<Super> clone() const {
28 return make_shared<T>(obj_);
29 }
30 const T obj_;
31 };
32 public:
33 template<typename T>
34 void add(int idx, const T& obj) {
35 cloneMap.emplace(idx, make_unique<ClonerT<T>>(idx, obj));
36 }
37

38 shared_ptr<Super> getInstance(int idx) const {
39 auto found = cloneMap.find(idx);
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40

41 if (found == cloneMap.end()) {
42 return nullptr;
43 }
44 return shared_ptr<Super>((found->second)->clone());
45 }
46

47 private:
48 unordered_map<int, unique_ptr<Cloner>> cloneMap;
49 };

As already seen and explained in chapter 5.1, all raw pointers were replaced by smart pointers.

New is the use of an unordered map instead of a vector list.

5.2.1 Unordered Map

An unordered map is an unordered associative container. This means the unordered map

manages the objects within a hash-table. (Figure 5.5)

The hash-table consists of entries, named buckets. Each bucket stores the managed objects in

a linked list. A hash-function converts the key into a value of type size_t. This value de�nes in

which bucket the object will be stored. With the linked list one bucket can store more than

one object at the time. The e�ciency of a hash-table depends on the distribution of the objects.

In average each bucket contains only one object. In this case the complexity of seek time is

T(n) = O(1). In worst case only one bucket contains all object. The seek time is linear so the

complexity is T(n) = O(n). At the beginning the hash-table consists of a number b of buckets.

If the loadfactor

loadfactor = n/b (5.1)

exceeds a de�ned threshold with a number n of objects, the hash-table will be reorganized

with a new number b of buckets. (cf. Kirch und Prinz, 2015, 828 - 829)
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Figure 5.5: Hash-table (Kirch und Prinz, 2015, 828)

5.2.2 Rvalue Reference

C++11 provides the option to explicitly de�ne rvalues. Unlike lvalues, rvalues do not have a

memory address.

Listing 5.9: Lvalue example

1 string st = "Hello from an Lvalue";
2 foo(st);

Listing 5.10: Rvalue example

1 foo(string("Hello from an Rvalue"));

Listing 5.9 shows an example of a typical lvalue. The string does have a name and a memory

address. Multiple modi�cations can be done. Listing 5.10 shows an example of an rvalue. It

exists only temporarily and after passing it to the function, the client is not able to do any
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more with the string because it does not have a name and a memory address. Rvalues are not

new. New is the rvalue reference.

Listing 5.11: Rvalue reference example

1 void foo(string&& st) {
2 ...
3 }

The function foo (listing 5.10) only accepts strings as rvalue as parameter. So the call of listing

5.9 would cause a compiler error because st is not an rvalue. An rvalue reference makes sure

that a reference is not used anymore outside of the function. (cf. Pohmann, 2013, 32 - 33) For

passing an lvalue as rvalue, C++11 provides the function move to cast an lvalue to an rvalue

reference. (Listing 5.12) The function forward provides the option to cast an rvalue reference

to an rvalue.

Listing 5.12: Move example

1 string st = "Hello from an Lvalue";
2 foo(move(st));

as shown in listing 5.12 by casting an lvalue to an rvalue the string st can be passed to the

function foo. The software designer must consider, the function implies that the parameter is

an rvalue and not needed anymore outside of a function. Classes will be extended by a move

constructor and a move assignment operator for managing rvalue references. These extend

the Rule of Three ownership policy to the Rule of Five. The clone factory always keeps its

managed objects. Therefore the visibility of move constructor and move assignment operator

must be set to private. (Listing 5.13)
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Listing 5.13: Move constructor and move assignment operator

1 #include "Shape.h"
2

3 using namespace std;
4 class Circle: public Shape {
5 public:
6 Circle() {
7 dynInt = new int(42);
8 }
9 ~Circle() { //Destructor

10 delete dynInt;
11 }
12

13 Circle(const Circle &obj) { //Copy constructor
14 //deep copy:
15 dynInt = new int(*obj.dynInt);
16 //shallow copy:
17 //dynInt = obj.dynInt;
18 }
19

20 void foo(void) {
21 cout << "Circle calls foo()" << endl;
22 }
23 int* dynInt;
24 private:
25 // Move constructor
26 Circle(Circle &&obj) = default;
27 // Copy assignment operator
28 Circle& operator=(const Circle&) & = default;
29 // Move assignment operator
30 Circle& operator=(Circle&&) & = default;
31 };
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5.2.3 Timing

Figure 5.6: Clone factory timing

Figure 5.6 compares the implementation of listing 5.6 with listing 5.8. The seek complexity for

�nding the requested object within the vector with 100 entries is T(n) = O(n) for the C++03

implementation. Because of the hash-table, the unordered map has a seek complexity of T(n)

= O(1). Nevertheless, in average the C++11 implementation is still slower than the C++03

implementation. For cloning 100,000,000 objects, where the requested object always is on

the �rst place within the vector, the C++03 implementation needs about 5.3 second. The

farther back the object is in the vector, the longer it takes to �nd it. So for cloning 100,000,000

objects, where the requested object always is on the last possible place within the vector, the

clone factory needs about 67 second. More than 10 times as much as in best case. The C++11

implementation needs constantly 52 seconds for cloning 100,000,000 objects.

The pro�ling output (Table 5.3) shows the distribution of timing of the C++03 in the worst case

scenario. With about 96% and 64.9 seconds the factory causes the biggest part of the execution

time. The pro�ling output (Table 5.4) of the C++11 implementation shows that the execution

time of the factory decreased. The main reason for this is the use of the unordered map. But

the use of smart pointers increases the execution time by 38.6 seconds and makes about 73% of
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the total execution time. The amount of not explicitly categorisable operations takes about 6%

and 3.24 seconds of the total execution time.

Category Percentage Time in s
Factory 96.55 64.90

Shape 2.59 1.74

Main 0.86 0.57

Other 0.00 0.00

Table 5.3: Clone factory timing distribution C++03

Category Percentage Time in s
Factory 18.01 9.51

Smart pointer 73.1 38.61

Shape 1.24 0.65

Main 1.35 0.71

Other 6.14 3.24

Table 5.4: Clone factory timing distribution C++11

5.2.4 Memory Consumption

Unlike the conditional statement implementation, a clone factory manages objects. For each

object the factory allocates memory. Figure 5.7 shows the memory overhead of the factory

depending on the number of managed objects. In general the C++11 implementation causes a

bigger memory overhead than the C++03 implementation. This overhead is caused by the use

of an unordered map including a hash-table. As mentioned in section 5.2.1 the hash-table of

the unordered map consists of a number of buckets, depending on the loadfactor (Equation 5.1).

When the loadfactor reaches a de�ned value, the unordered map allocates new memory for

having more buckets. This allocation can be observed in �gure 5.7 between 20 and 25, 45 and

50 as well as between 95 and 100 managed objects. The std::vector also allocates more memory

than actually needed to reduce the number of allocations on growing. (cf. cppreference, 2014)

Figure 5.7 also shows these allocations between 15 and 20, 30 and 35 as well as between 60 and

65 managed objects. The size of the particular objects has also has an impact of the memory

consumption of the clone Factory.
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Figure 5.7: Clone factory memory consumption

5.3 Lambda Implementation

As mentioned in section 5.2 cloning objects is error-prone because of the demand for mainte-

nance of destructor, copy constructor and copy assignment operator. In addition, depending

on the size and the number of the managed objects the clone factory tends to have a high

memory consumption. With establishing lambda expressions, C++11 provides an alternative

implementation. (Listing 5.14)

Listing 5.14: Lambda implementation C++11

1 #include <memory>
2 #include <unordered_map>
3 #include <functional>
4

5 using namespace std;
6

7 template<typename Base>
8 class LambdaFactory {
9 public:

10 LambdaFactory() {
11 }
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12

13 shared_ptr<Base> getInstance(const int idx) {
14 auto found = lambdaMap.find(idx);
15 return found != lambdaMap.end() ? found->second() : nullptr;
16 }
17

18 template<size_t IDX, typename T, typename... Args>
19 void add(Args... args) {
20 lambdaMap.emplace(IDX,
21 ([=]()-> auto {return make_shared<T>(args...);}));
22 }
23

24 private:
25 unordered_map<int,function<shared_ptr<Base>()>> lambdaMap;
26 };

5.3.1 Lambda Expression

A lambda expression is a local anonymous function with access to objects and variables in its

environment. (cf. Kirch und Prinz, 2015, 914 - 915)

Listing 5.15: Lambda expression syntax

1 [capture](parameterlist) mutable noexcept -> return-type
2 { function body }

The syntax of a lambda expression (Listing 5.15) consists of the following parts:

• [capture] de�nes the access to its environment. It can be either [] no access, [=] access

by value or [&] access by reference. Also combinations and access to particular objects

are possible. (Example: [=,&var] de�nes general access by value except for the variable

var, which is passed by reference.)

• (parameterlist) contains the declaration of the function’s parameter.

• mutable is optional and de�nes whether objects, passed by value, are declared as const

or not.

• noexcept is optional and de�nes whether the function is able to throw an exception or

not.
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• return-type is optional and explicitly de�nes the return-type. Without de�ning it

explicitly, the return-type can be determined from the return value.

• function body contains the implementation of the function.

The call of a lambda expression can be occur later than the declaration. Because of that, lambda

expressions can be stored passed as a parameter. For this C++11 provides a generic wrapper

named function. function is able to take a lambda expression. It gives the lambda expression a

memory address. Line 20 and 21 of listing 5.14 shows the declaration of a lambda expression

which instantiates a smart pointer refering to an object of a generic type T and stores it into a

container. If the object of type T is actually needed, the stored lambda expression can be called

which instantiates and returns the requested smart pointer.

5.3.2 Variadic Template

With variadic templates C++11 extends the generic type declaration. A variadic template is

useful in case when the software designer does not know how many arguments are needed.

(cf. Kirch und Prinz, 2015, 785)

Listing 5.16: Variadic templates syntax

1 template<size_t IDX, typename T, typename... Args>
2 void add(Args... args) {
3 lambdaMap.emplace(IDX,
4 ([=]()-> auto {return make_shared<T>(args...);}));
5 }

The variadic part of the template is declared with three dots and must always placed as last

argument. The compiler analyses the use of the variadic templates and replaces them by the

needed data types. Variadic templates also allow zero arguments. Listing 5.16 shows a snipped

of the lambda factory implementation (Listing 5.14) for adding new classes to the factory.

Within the factory the managed classes are unknown and so the number and types of the

parameter. As result of the variadic template the factory is able to manage any type of class

and gives no constrains for the constructor parameters.
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5.3.3 Timing

Figure 5.8: Lambda implementation timing

With about 48 seconds for instantiating 100,000,000 objects (Figure 5.8) the lambda implemen-

tation has a similar timing like C++11 implementation of the clone factory. Also the seek

complexity is with T(n) = O(1) the same because of the use of an unordered map. The pro�ling

output (Table 5.5) of the lambda implementation shows that the use of smart pointers has with

about 64% and 30.7 seconds the biggest e�ect on the total execution time.

Category Percentage Time in s
Factory 24.80 11.78

Smart pointer 64.71 30.73

Shape 2.38 1.13

Main 3.63 1.72

Other 4.11 1.95

Table 5.5: Lambda implementation timing distribution C++11
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5.3.4 Memory Consumption

Figure 5.9: Lambda implementation memory consumption

On the �rst look, the lambda implementation of the factory shows exactly the same memory

consumption (Figure 5.9) than the C++11 clone factory implementation (Figure 5.7). But this

is only true in case when the managed classes have minimum size. One advantage of the

lambda implementation, compared with the clone factory implementation, is the managemend

of classes instead of objects. This makes the memory consumption of the factory independent

of the size of the managed classes. So, in case when the size of the classes rise, the memory

consumption of the clone factory implementation also rises, but the lambda implementation

stays constant.
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As mentioned in chapter 2, a characteristic of a reactive system is that responses of the reactive

system are dependent on the current state of the system. Usually an embedded reactive system

is able to change its state. A simple example of this is a system with a failure state. If everything

meets the expectations, the system stays in its normal state. But if something unexpected

occurs, the system switches to its failure state. Within the failure state the system tries to keep

the essential subsystems running and minimizes the damages within the environment. Other

stateful systems like a remote control extend the functionality of the system with a limited

number of buttons. Depending on the state, the remote control is able to communicate with

either the television, dvd player or another multimedia device.

Figure 6.1 shows a simple example of a state

Figure 6.1: State machine of a light.

machine with three states and three signals.

Light O� is the initial state. The system can

change to the state Light On by the signal

’on’ and to the state Destroyed by the sig-

nal ’destroy’. From state Line On the sys-

tem can change back to the state Light O�

or to the state Destroyed. Destroyed is a �nal

state. When the light is destroyed, it is de-

stroyed.

The state pattern is an object based pattern of

the type behavioral. The problem is how to

react depending on the current state and the

external stimuli with a minimum of overhead

in timing. Procedural implementations solve

this problem by providing a matrix where the combination of the current state and the input

determine behavior and the transition to the next state. Other implementations work with a

number of switch-case-selections. The result of these implementations is di�cult read and
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Figure 6.2: State pattern UML

to maintain. The base of the state pattern of GoF is a context class and an abstract base state

class. (Figure 6.2) Concrete states derive from the base state class and implement the interface.

Context is the connection between Client and the state machine. It contains an instance of

the state machine and provides the same interface as the state machine for delegating the

incoming signals. Client does only know Context. It uses Context as if it would be a concrete

State class. The state machine has access to public member variables of Context. (cf. Gamma

u. a., 2015, 372 - 377)

6.1 Polymophism Implementation

The example explained by GoF uses polymorphism. The concrete states use the interface of

the abstract base state class (Listing 6.2) and implement the behavior. (Listing 6.3 and 6.4)
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Context (Listing 6.1) contains an instance of LightO� as initial state. Context and State depend

on each other. This circular dependency can be solved by forward declaration. Therefore it is

necessary to declare Context once within the header �le of State (Listing 6.2, line 1) and include

the header �le of Context later within the implementation of the concrete states. (Listing 6.4,

line 4) Depending on the behavior of the state machine, similar dependencies occur between

concrete states and can be solved on a similar way. Context also provides a dispatcher which

receives external signals and calls the particular functions.

Listing 6.1: State pattern Context C++03

1 #include "LightOff.h"
2 #include <map>
3

4 using namespace std;
5 class Context : State {
6 public:
7 enum SIGNAL{ON=0, OFF=1, DESTROY=2};
8

9 Context() {
10 numOfChanges = 0;
11 state = new LightOff(this);
12

13 functionMap[ON] = &Context::on;
14 functionMap[OFF] = &Context::off;
15 functionMap[DESTROY] = &Context::destroy;
16 }
17

18 void call(int signal) {
19 if(functionMap.find(signal) != functionMap.end()) {
20 (this->*functionMap[signal])();
21 }
22 }
23

24 void on() {state->on();}
25 void off() {state->off();}
26 void destroy() {state->destroy();}
27 void status() {state->status();}
28

29 State* state;
30 int numOfChanges;
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31 private:
32 map<int, void (Light::*) ()> functionMap;
33 };

Listing 6.2: State pattern abstract State C++03

1 class Context;
2

3 class State {
4 public:
5 enum INPUT{ON=0,OFF=1,DESTROY=2};
6

7 State(){context = 0;}
8 State(Context* context){this->context = context;}
9

10 virtual void on() = 0;
11 virtual void off() = 0;
12 virtual void destroy() = 0;
13 virtual void status() = 0;
14 virtual ~Context(){};
15

16 Context* context;
17 };

Listing 6.3: State pattern LightO� declaration C++03

1 #include "State.h"
2

3 class LightOff : public State{
4 public:
5 LightOff(Context* context): State(context) {}
6

7 virtual void on();
8 virtual void off();
9 virtual void destroy();

10 virtual void status();
11

12 ~LightOff(){};
13 };
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Listing 6.4: State pattern LightO� implementation C++03

1 #include "LightOff.h"
2 #include "LightOn.h"
3 #include "Destroyed.h"
4 #include "Context.h"
5

6 void LightOff::on() {
7 delete context->state;
8 context->state = new LightOn(context);
9 context->numOfChanges++;

10 }
11

12 void LightOff::off() {}
13

14 void LightOff::destroy() {
15 delete context->state;
16 context->state = new Destroyed(context);
17 context->numOfChanges++;
18 }
19

20 void LightOff::status() {
21 cout << "current state is: OFF!"<< endl;
22 }

Listing 6.5: State pattern Client C++03

1 #include "Context.h"
2

3 int main(int argc, char** argv){
4 Context* light = new Context();
5 light->call(externalSignal);
6

7 light->status();
8

9 delete light;
10 return 1;
11 }

When a transition occurs, the current instance of the concrete state will be replaced by a

new concrete state. Lines 7 and 8 of listing 6.4 shows the transition from LightO� to LightOn.
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The current state will be deleted and replaced by the new state. If transitions occur in a high

frequency, it might be useful to keep the available states instantiated in a pool and reuse

them. This reduces the time for allocating memory and instantiating objects but increases the

consumption of memory. Client (Listing 6.5) instantiates Context and passes incoming signals

to it.

The main change of the implementation with C++11 is the use of smart pointers instead of raw

pointers. Within the polymorphism implementation the use of smart pointers shows two main

di�culties. As seen in the C++03 implementation (Listing 6.1) Context passes the address of

itself to the concrete state by using the keyword this. The Client of the C++11 implementation

(Listing 5.4) uses a smart pointer for refering to Context. Context is not able to pass itself

as smart pointer to the concrete state. Therefore Context provides the function initialize to

provide the option of passing Context within a smart pointer from Client to the concrete state.

Client must call initialize before using the state machine. (Listing 6.7)

Listing 6.6: State pattern Context C++11

1 #include "State.h"
2 #include <unordered_map>
3

4 using namespace std;
5 class Context {
6 public:
7 enum SIGNAL{ON=0, OFF=1, DESTROY=2};
8

9 Context() {
10 numOfChanges = 0;
11 }
12

13 void initialize(weak_ptr<Context> context) {
14 state = make_unique<On>(context);
15

16 functionMap.emplace(make_pair(ON,
17 bind(&Context::on, this)));
18 functionMap.emplace(make_pair(OFF,
19 bind(&Context::off, this)));
20 functionMap.emplace(make_pair(DESTROY,
21 bind(&Context::destroy, this)));
22 }
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23

24 void call(int signal) {
25 auto found = functionMap.find(signal);
26 if (found != functionMap.end()) {
27 (found->second)();
28 }
29 }
30

31 void on() {state->on();}
32 void off() {state->off();}
33 void destroy() {state->destroy();}
34 void status() {state->status();}
35

36 unique_ptr<State> state;
37 int numOfChanges;
38 private:
39 unordered_map<int, function<void()>> functionMap;
40 };

Listing 6.7: State pattern Client C++11

1 #include "Context.h"
2

3 int main(int argc, char** argv){
4 auto light = make_shared<Context>();
5 light->initialize(light);
6

7 light->call(externalSignal);
8

9 light->status();
10 return 1;
11 }

The second di�culty occurs because of the circular dependency between Context and State.

As mentioned in section 5.1.1 shared pointers do reference counting. In case of using shared

pointers within the example the circular dependencies would cause that Context and State

would not be deleted automatically.

As shown in �gure 6.3 both, Client and State, refering to Context with a shared pointer. Context

refers to State with an unique pointer. If Client disappears, the reference counter decreases
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Figure 6.3: Shared pointer dependencies

but does not reach zero because State is still refering to Context. Therefore Context will not

be deleted. When Context will not be deleted, State will also not be deleted because it is still

referred by Context. A memory leak is the consequence. Deleting the unique pointer, which

referes to State, manually would solve this problem. Another solution provides the use of weak

pointer.

Figure 6.4 shows the same example with one di�erence. Instead of using a shared pointer, State

only refers to Context with a weak pointer. The e�ect is that the reference counter reaches

zero when Client disappears because weak pointers have no e�ect on the reference counter.

When the reference counter reaches zero, Context will be deleted regardless whether State is

still refering to Context. In this particular example this is no problem because the destructor of

Context deletes the reference to State and State will also be deleted.
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Figure 6.4: Weak pointer dependencies

Before calling a member or a function of an object referred by a weak pointer, the software

designer must make sure that the weak pointer is pointing to a valid object. For this a weak

pointer provides the function lock. lock casts the weak pointer to a temporary shared pointer

which can be used to manipulate the object. (Listing 6.8) This temporary shared pointer

temporarily increases the reference counter.

Listing 6.8: State pattern LightO� implementation C++11

1 #include "LightOff.h"
2 #include "LightOn.h"
3 #include "Destroyed.h"
4 #include "Context.h"
5

6 void LightOff::on() {
7 if(auto tmp = context.lock()) {
8 tmp->state = make_unique<On>(context);
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9 tmp->numOfChanges++;
10 }
11 }
12

13 void LightOff::off() {
14 cout << "already off!" << endl;
15 }
16

17 void LightOff::destroy() {
18 if(auto tmp = context.lock()) {
19 tmp->state = make_unique<Destroyed>(context);
20 tmp->numOfChanges++;
21 }
22 }
23

24 void LightOff::status() {
25 if(auto tmp = context.lock()) {
26 cout << "current state is: OFF!" << endl;
27 }
28 }

6.1.1 Bind

bind is a function which allows to adapt signatures of functions by prede�ning function

parameters. (Listing 6.9)

Listing 6.9: Bind value to function parameter C++11

1 int add(int a, int b) {
2 return a + b;
3 }
4

5 auto addOne = bind(&add, 1, placeholders::_1);
6 auto addTwo = bind(&add, 2, placeholders::_1);
7 cout << addOne(3) << ", " << addTwo(5) << endl;

It also provides the option to bind function pointers of memberfunctions to particular instances.

(cf. Pohmann, 2013, 169 - 172) Line 16 to 21 of listing 6.6 shows how to use bind in combina-

tion with make_pair to manage function pointers within a map without using raw pointers.

make_pair is a wrapper which combines a key and a value to a map-compatible type.
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6.1.2 Timing

Figure 6.5: State pattern polymorphism timing

Figure 6.5 shows the di�erences between the C++03 implementation and the C++11 implemen-

tation of the state pattern. For changing the state 100,000,000 times, the C++03 implementaton

needs about 26 seconds and the C++11 implementation needs about 65 seconds. Table 6.1

compared with table 6.2 shows a reduction of the execution time of about 6 seconds for Context.

The reason for this is the use of an unorderd map with a seek complexity of T(n) = O(1) instead

of the use of a normal map with a seek complexity of T(n) = O(log(n)). The dominating factor

fo the execution time of the C++11 implementation is caused by the use of smart pointers.

With about 35 seconds it is responsible for about 55.2% of the total execution time.
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Category Percentage Time in s
Context 93.29 24.39

State 5.58 1.45

Main 1.12 0.29

Table 6.1: State pattern polymorphism timing distribution C++03

Category Percentage Time in s
Context 28.45 18.39

Smart pointer 55.28 35.76

State 5.11 3.30

Main 1.12 0.29

other 7.79 5.03

Table 6.2: State pattern polymorphism timing distribution C++11

6.1.3 Memory Consumption

For each transition the polymorphism implementation allocates memory for the new state.

Figure 6.6 shows an allocation of 16 bytes for each transition for the C++03 implementation

and 24 bytes for each transition for the C++11 implementation. The overhead of 8 bytes is

caused by the use of a weak pointer within state for refering to Context. As mentioned in

section 5.1.1, weak pointers also refer to a reference counter. One way to avoid this overhead

is to move the weak pointer to Context and pass it as function parameter to State only when it

is needed.
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Figure 6.6: State pattern polymorphism memory consumption

6.2 Placement new Implementation

Dynamic memory allocation is unpredictable. It can take an unde�ned amount of time for

�nding a suitable chunk of memory. In worst case no memory is available. Especially for

real-time systems the behavior of allocating memory is restricted. One solution C++ provides

is the use of the placement new operator. The behavior of placement new is similar to the

new operator with the di�erence that the placement new operator takes an already allocated

memory address where the new object will be instantiated. (Listing 6.10, line 9)

Listing 6.10: Placement new operator C++11

1 #include "LightOff.h"
2 #include "LightOn.h"
3 #include "Destroyed.h"
4 #include "Context.h"
5

6 void LightOff::on() {
7 cout << "turn on!" << endl;
8 if(auto tmp = context.lock()) {
9 new(this) On(context);

10 tmp->numOfChanges++;
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11 }
12 }
13

14 void LightOff::off() {
15 cout << "already off!" << endl;
16 }
17

18 void LightOff::destroy() {
19 cout << "Destroy!" << endl;
20 if(auto tmp = context.lock()) {
21 new(this) Destroyed(context);
22 tmp->numOfChanges++;
23 }
24 }
25

26 void LightOff::status() {
27 if(auto tmp = context.lock()) {
28 cout << "current state is: OFF!" << endl;
29 }
30 }

In this particular case the combination of smart pointers and the use of the placement new

operator causes no problems. The change of the object will not be noticed by the smart pointer.

However, it is discussable whether the use of the placement new operator is still acceptable

when the use of the new operator is replaced by smart pointers. C++11 does not provide a direct

compensation for the placement new operator with the same behavior. But with allocate_shared

C++11 provides an option to use an own memory management.

6.2.1 Allocate_shared

The allocate_shared operator is a variant of the make_shared operator. Unlike make_shared,

allocate_shared takes an own allocator as parameter for allocating memory. Writing an own

allocator which is compliant to the standard allocator is not trivial. Therefore it is recommended

to use already existing allocators. Line 40 of listing 6.11 shows the instantiation of a pool

allocator with the name alloc. In line 15 alloc is used for instantiating a new shared pointer

refering to an object of class On. alloc will also be used for transitions within a particular state.

(Listing 6.12, line 8) A pool allocator uses a memory pool with a pre-allocated number of �xed

sized memory chunks. (Figure 6.7) If memory is requested, the pool allocator �nds the next free
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memory chunk, and returns the address. In case when a memory chunk is not needed anymore

by the requestor, the pool allocator declares this chunk as free to use by other requestors.

Figure 6.7: Memory pool

Listing 6.11: State pattern pool allocator Context C++11

1 #include "State.h"
2 #include <unordered_map>
3 #include <boost/pool/pool_alloc.hpp>
4

5 using namespace std;
6 class Context {
7 public:
8 enum SIGNAL{ON=0, OFF=1, DESTROY=2};
9

10 Context() {
11 numOfChanges = 0;
12 }
13

14 void initialize(weak_ptr<Context> context) {
15 state = allocate_shared<On>(alloc,context);
16

17 functionMap.emplace(make_pair(ON,
18 bind(&Context::on, this)));
19 functionMap.emplace(make_pair(OFF,
20 bind(&Context::off, this)));
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21 functionMap.emplace(make_pair(DESTROY,
22 bind(&Context::destroy, this)));
23 }
24

25 void call(int signal) {
26 auto found = functionMap.find(signal);
27 if (found != functionMap.end()) {
28 (found->second)();
29 }
30 }
31

32 void on() {state->on();}
33 void off() {state->off();}
34 void destroy() {state->destroy();}
35 void status() {state->status();}
36

37 shared_ptr<State> state;
38 int numOfChanges;
39

40 boost::pool_allocator<State> alloc;
41 private:
42 unordered_map<int, function<void()>> functionMap;
43 };

Listing 6.12: State pattern pool allocator LightO� implementation C++11

1 #include "LightOff.h"
2 #include "LightOn.h"
3 #include "Destroyed.h"
4 #include "Context.h"
5

6 void LightOff::on() {
7 if(auto tmp = context.lock()) {
8 tmp->state = allocate_shared<On>(tmp->alloc,context);
9 tmp->numOfChanges++;

10 }
11 }
12

13 void LightOff::off() {
14 cout << "already off!" << endl;
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15 }
16

17 void LightOff::destroy() {
18 if(auto tmp = context.lock()) {
19 tmp->state = allocate_shared<Destroyed>(tmp->alloc,context);
20 tmp->numOfChanges++;
21 }
22 }
23

24 void LightOff::status() {
25 if(auto tmp = context.lock()) {
26 cout << "current state is: OFF!" << endl;
27 }
28 }

6.2.2 Timing

Figure 6.8: State pattern placement new timing

Using allocate_shared including an own memory management is more expensive in timing

than using the placement new operator. Figure 6.8 shows the di�erences in timing between
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the placement new implementation and the allocate_shared implementation. For changing

the state 100,000,000 times, the placement new implementation needs about 32 seconds and

the allocate_shared implementation needs about 110 seconds. The comparison of pro�ling

output of the placement new implementation (Table 6.3) with the pro�ling output of the

C++11 polymorphism implementations (Table 6.2) shows a reduction of the execution time

for smart pointers. The placement new operator does not instantiate a new smart pointer. It

just instantiates a new refered object on the same memory address where the already existing

smart pointer is refering to. This causes a reduction of about 24 seconds for changing the state

100,000,000 times.

Category Percentage Time in s
Context 39.34 12.73

Smart pointer 35.92 11.62

State 6.57 2.12

Main 6.21 2.01

other 11.95 3.86

Table 6.3: State pattern placement new timing distribution C++11

For every transition the allocate_shared implementation creates a new smart pointer. With

37,8% of the total execution time the use of allocate_shared is responsible for about 41 seconds.

(Table 6.3) In addition to that, the used memory pool contributes to the execution time with

about 23 seconds.

Category Percentage Time in s
Context 20.55 22.69

Memory pool 21.55 23.79

Smart pointer 37.83 41.77

State 4.20 4.63

Main 1.52 1.67

other 14.32 15.81

Table 6.4: State pattern pool allocator timing distribution C++11

6.2.3 Memory Consumption

Both, the placement new implementation and the allocate_shared implementation, have the

advantage that transitions cause no memory allocation. Figure 6.9 shows a constant memory

55



6 State Pattern

consumption independent of the number of transitions. Because of the memory pool, which

allocates a number of memory chunks, the allocate_shared implementation has a slightly higher

memory consumption than the placement new implementation. This overhead is dependent on

the choice of the allocator. The choosen allocator of listing 6.11 does not provide the option to

declare the number of pre-allocated chunks. For the state pattern only two chunks are needed.

Figure 6.9: State pattern placement new memory consumption
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7 Conclusion

Within the scope of this bachelor thesis it was the task to analyse the impact of the new C++

facilities, introduced since C++11, on a selection of design patterns which are commonly used

within embedded software development.

With three di�erend versions of implementation for the factory method pattern as one of the

two analysed design patterns, the pro�ling output has shown that using C++11 facilities mainly

causes an overhead of execution time and memory consumption. As advantage the analyse

has shown that C++11 provides simple ways of implementation with constant seek complexity

independent of the number of managed classes and a memory consumption independent of

the size of the managed classes.

The pro�ling output of two versions of implementation for the state pattern as the second

analysed design pattern, con�rms the overhead in execution time and memory consumption

of the C++11 facilities. In addition to this, the analyse has shown how the wrong use of smart

pointers causes memory leaks and how to combine the use of smart pointers with an own

memory management.

An analysis of just two design patterns can only provide idea of how C++11 does impact design

patterns. In general it has shown that C++11 does not increase the performance but it increases

the quality of the sourcecode. This includes reusability as well as maintainability. Nevertheless

C++03 does still have a right to live. After all, my opinion is to keep C++03 and especially raw

pointers as possible option for projects with a limited amount of resources. But for most of the

modern embedded systems with an adequate amount of resources, I think the cost e�ectivness

of the use of C++11 facilities is appropriate and will bene�t the project.
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8 Perspective

Tha analysis has shown that modern standards more focus the quality of sourcecode and

less the performance. A view into the list of the features probably released with the C++17

standard shows that this trend will continue. Many design patterns more show a tendency of

improvement with the new standards. I think spending time in implementing more established

design pattern with modern C++ facilities is the right way to be prepared for the futures

requirements on software development.
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