
Faculty of Engineering and Computer Science
Department of Computer Science

Fakultät Technik und Informatik
Studiendepartment Informatik

Master Thesis

Felix Kolbe

Goal Oriented Task Planning
for Autonomous Service Robots

Felix Kolbe

Goal Oriented Task Planning
for Autonomous Service Robots

im Studiengang Master Informatik
am Studiendepartment Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Andreas Meisel
Zweitgutachter: Prof. Dr. Thomas Thiel-Clemen

Abgegeben am 15.11.2013

Felix Kolbe

Thema der Masterarbeit
Zielorientierte Aufgabenplanung für autonome Service-Roboter

Stichworte
dynamische Aufgabenplanung, task level, autonome Robotik, Service-Roboter, GOAP, ROS,
SMACH, RGOAP

Zusammenfassung
Mobile autonome Service-Roboter agieren in hochgradig dynamischen Umgebungen und
benötigen ein geeignetes Planungssystem um ihre Aufgaben zuverlässig zu erfüllen. In
dieser Arbeit werden Aufgabenplanungskonzepte für autonome Service-Roboter diskutiert. Zur
Aufgabenplanung in der Robotik wird RGOAP nach dem Konzept der zielorientierten Aufgaben-
planung (GOAP) entwickelt. Die Implementierung der Python-Bibliothek erfolgt in drei Paketen:
ein eigenständiges Kernpaket, ein Adapterpaket für das Robotik-Softwaresystem ROS und ein
Adapterpaket für die Zustandsautomatenbibliothek SMACH. RGOAP wird schließlich erfolgreich
genutzt um die Selbständigkeit des mobilen Service-Roboters Scitos zu verbessern.

Felix Kolbe

Title of the master thesis
Goal Oriented Task Planning for Autonomous Service Robots

Keywords
dynamic task planning, task level, autonomous robotics, service robot, GOAP, ROS, SMACH,
RGOAP

Abstract
Mobile autonomous service robots operate in a highly dynamic environment, requiring a capa-
ble high-level planning system to achieve their tasks. In this paper the characteristics of task
planning systems for autonomous service robots are discussed. RGOAP, a robotic planning
system based on the concept of goal oriented action planning, is developed. It is implemented
as a Python library with three packages: a third-party-independent core package, an adapter
package for the robotic software framework ROS and an adapter package for the state machine
library SMACH. Finally, RGOAP is used successfully to add an autonomous behaviour to the
mobile service robot Scitos.

Contents

List of Figures 1

Nomenclature 2

1 Introduction 3
1.1 Development goals . 4
1.2 Thesis structure . 4

2 Background 5
2.1 Planning architectures . 5
2.2 The robot Scitos . 5

2.2.1 Current capabilities of the robot . 6
2.2.2 Current control architecture of the robot 6

2.3 Software & ROS . 6
2.3.1 ROS communication concepts . 7
2.3.2 Available interfaces on used robot . 7

3 Concurrent work 10
3.1 Finite State Machines . 10

3.1.1 State Machine implementation: SMACH 10
3.2 Task execution environment for robotics . 12
3.3 Goal oriented action planning . 12

3.3.1 Details of GOAP . 12
3.3.2 Existing GOAP implementations . 13

4 Analysis & Design 16
4.1 Functional requirements . 16

4.1.1 Required criteria . 17
4.1.2 Reasonable criteria . 19
4.1.3 Optional criteria . 20
4.1.4 Irrelevant criteria . 21

4.2 Nonfunctional requirements . 21
4.2.1 Autonomous behaviour . 21
4.2.2 For use within ROS . 21
4.2.3 For students’ use . 21
4.2.4 Programming language . 22

Contents v

5 Development 23
5.1 The need for an own implementation . 23
5.2 Package overview . 24
5.3 Data classes . 24

5.3.1 Conditions . 25
5.3.2 World state . 26
5.3.3 Effects . 26
5.3.4 Preconditions . 28
5.3.5 Goals . 29
5.3.6 Actions . 29
5.3.7 Condition.set_value() vs Action.run() . 30

5.4 Control flow classes . 30
5.4.1 Planner . 30
5.4.2 Nodes . 31
5.4.3 Introspection . 34
5.4.4 Runner . 34

5.5 Connecting RGOAP and SMACH . 35
5.5.1 Integrating SMACH states in RGOAP 35
5.5.2 Executing RGOAP plans as SMACH container 37
5.5.3 Invoking RGOAP from SMACH . 39

6 Use case: the robot 40
6.1 Defined conditions . 40

6.1.1 MemoryConditions . 40
6.1.2 ROSTopicConditions . 40

6.2 Defined actions . 41
6.2.1 Pure RGOAP actions . 41
6.2.2 Actions wrapping SMACH states . 41

6.3 Defined goals . 41
6.3.1 Static goals . 41
6.3.2 Generated goals . 42

6.4 Tasker . 42

7 Evaluation 44
7.1 Functional requirements . 44

7.1.1 Required criteria . 44
7.1.2 Reasonable criteria . 45
7.1.3 Optional criteria . 46
7.1.4 Irrelevant criteria . 47

7.2 Nonfunctional requirements . 47
7.2.1 Autonomous behaviour . 47
7.2.2 For use within ROS . 48
7.2.3 For students’ use . 48

Contents vi

7.2.4 Programming language . 48

8 Conclusion & Outlook 49
8.1 Known issues . 49

8.1.1 Improve deviation handling . 49
8.1.2 Precondition-effect-symmetry . 49
8.1.3 Actions can change conditions accidentally 50

8.2 Further improvements . 50
8.2.1 Use common data structure in RGOAP and SMACH 50
8.2.2 Alternative planning algorithms . 51

8.3 Ending . 51

Bibliography 51

A Code examples 55
A.1 Subclassing VariableEffect . 55
A.2 Subclass of SMACHStateWrapperAction . 55

List of Figures

1.1 Mobile manipulation robot Scitos, Robot Vision Lab, UAS Hamburg 3

2.1 ROS Computation Graph . 7
2.2 Basic ROS communication concepts . 7

3.2 Simple example of a node graph . 13
3.1 SMACH state machine example . 15

5.1 Class diagram of RGOAP classes representing data 24
5.2 Communication diagram of RGOAP classes responsible for control flow 31
5.3 RGOAP plan example . 32
5.4 RGOAP planning graph example . 33
5.5 Sequence diagram of the Runner class planning and executing a goal 35
5.6 RGOAP generated SMACH state machine example 38

6.1 Interaction overview diagram of RGOAP . 43

Nomenclature

A* A path finding algorithm 18

FSM Finite State Machine 10

GOAP Goal Oriented Action Planning 12

Planner The procedure that tries to find a plan for a given goal 23

RGOAP Robotic GOAP 16

ROS Robot Operating System, the software framework used on the robot Scitos 6

ROS network The computation graph of interconnected ROS processes, called nodes 7

Scitos The robot the developed planning system is used with 5

SMACH A state machine implementation 10

1 Introduction

Figure 1.1: Mobile manipulation robot
Scitos, Robot Vision Lab, UAS Hamburg

Robots are meant to support humans. Whether they
are mobile or lined up in a factory, their tasks are ei-
ther too dangerous, too repetitive or too difficult for
humans. The classification of service robots usually
marks a mobile robot which operates in the surround-
ings of humans. For years service robots are clean-
ing floors, guiding visitors, carrying loads in factories
or guarding institutions at night.

In contrast to the measurable and controllable envi-
ronment present to a conventional factory robot, hu-
man environments form a difficult task for robots. To
master this environment, typical service robots use
several different types of sensors to perceive their sur-
roundings.

Their mechanical capabilities improve every year, as
does the computing power that is available within the
requirements of size, weight and energy consumption
of a mobile system. Obviously this heightens the ex-
pectations on autonomous robots, for example to han-
dle unknown and changing environments. The world-
wide occurrence of mobile service robots spread con-
tinuously and the increase is expected to continue in
the next years (IFR Statistical Department, 2013).

Nowadays robots are designed to manoeuvre and co-
operate tightly with people, for example to transport
meals and medicine in clinics (Hägele et al, 2011, p.
9). To push this cooperation to a high level and to
simplify the commanding of such a robot, a very au-
tonomous and intelligent behaviour is needed. Espe-
cially when the performance of a task is interrupted by
unexpected difficulties, robots ought to continue that
task without any additional user interaction.

1 Introduction 4

1.1 Development goals

The goal of this paper is the development and integration of a task planning component for
service robots. The component should facilitate the service robot Sctios from the Robot Vision
Lab at the University of Applied Sciences Hamburg (see figure 1.1 on the preceding page), that
has no dynamic planning functionality yet, to achieve an autonomous behaviour.

Therefore tasks are needed that are suitable for the robot, given its capabilites and constraints.
The robot should complete a given task even if unseen problems occur. Examplary scenarios
are:

• If the current navigation path is suddenly blocked, a new path has to be found.

• If a human runs into the robot and the bumper is triggered, locking the drive unit, the robot
should release its bumper and continue its plan or replan to reach the task’s goal.

• If the manipulator has to be contracted into the robot’s footprint to avoid collisions with the
environment, or if directing the manipulator-mounted camera towards an obstacle would
help in planning, the robot should be able to detect this and perform its actions accordingly.

1.2 Thesis structure

This paper’s general challenge is described in the previous section. Hereafter the environment
for the needed task planning system is introduced, including the robot and its capabilities (Chap-
ter 2: Background). Next, existing task planning technics are explained (Chapter 3: Concurrent
work). In the subsequent chapter requirements for a robotic task planning system are listed
and classified (Chapter 4: Analysis & Design). After that the implementation of the developed
planning system is detailed (Chapter 5: Development), including its usage with the robot Scitos
(Chapter 6: Use case: the robot). Afterwards the compliance of the developed system to the
requirements listed before is evaluated (Chapter 7: Evaluation). Finally the summarized and
further improvements are given (Chapter 8: Conclusion & Outlook).

2 Background

In this chapter background information about planning systems in general is given. Also it fur-
ther introduces the environment and the used robot for which a task planning system is to be
developed.

2.1 Planning architectures

A program for a robotic system is usually split into different levels of capabilities, arranged in a
hierarchical structure (Siciliano et al, 2009, p. 233).

For the task planning of mobile robots at least a hybrid architecture is used which combines
a reactive with a deliberative layer (Uhl et al, 2007, p. 104). Here the low-level reactive layer
controls the robot’s actuators, obeying sensor input directly, for example to navigate around
unexpected obstacles. The deliberative layer plans to achieve a higher-level goal and therefore
instructs and monitors the reactive layer.

Often robot control programs are split into a three level architecture (Kortenkamp and Simmons,
2008): The highest one, the planning or task level, preserves the available tasks as well as the
overall knowledge of the world and the robot. It selects one task to be followed and instructs
the according part of the executive level to follow that task (Siciliano et al, 2009, p. 235). The
executive level knows how to split that task into actions, including their ordering and timing.
Accordingly, the behavioural control level controls the actuators to perform the actions given by
the executive level.

A fourth servo level can additionally be defined as the lowest level (Siciliano et al, 2009, p. 234),
though these low-level controllers are usually integrated in the hardware.

2.2 The robot Scitos

The use case of the task planner developed in this paper is the service robot Scitos (see fig-
ure 1.1) from the Robot Vision Lab at the University of Applied Sciences Hamburg. It is used
as a development robot to examine and improve robotics, especially for service applications at
home. The planning system has to function in this environment.

2 Background 6

2.2.1 Current capabilities of the robot

The robot Scitos consists of a moving platform with several sensors and a manipulator on top.
These give the robot the following capabilites:

• The platform has a differential drive allowing for two-dimensional movements and in-place
rotation.

• A two-dimensional laser scanner and the drive’s odometry provide data for environment
mapping and self localisation. The software used is able to navigate the robot to a goal
while avoiding obstacles.

• The manipulator has five joints and two fingers for pick and place operations. It can be
controlled using kinematics and self collision detection.

• A Kinect1 camera provides both color and depth images. It is mounted to the manipulator’s
gripper for a direct view over the objects to be manipulated. Panning the manipulator
facilitates a three-dimensional perception of the robot’s surroundings.

2.2.2 Current control architecture of the robot

For the robot algorithms on the lowest behavioural control level are available and functioning,
like for instance trajectory following. The mid level executive can easily be built using the state
machine framework SMACH (introduced in section 3.1.1). For the task planning level also a
state machine could be used, though a state machine itself is constructed statically and does
not support dynamic task planning.

2.3 Software & ROS

For programming the service robot Scitos and connecting all its software components the ROS
framework (Quigley et al, 2009) is used. ROS is an open-source meta-operating system for
any robot (ROS Wiki, 2013c) and began as a collaboration between the STAIR2 project of the
Artificial Intelligence Laboratory at Standford University and the Personal Robots Program at
Willow Garage3. It features both various robot control libraries and many tools for package
maintenance and process infrastructure analysis.

1Kinect is a color and depth camera device by Microsoft: http://www.xbox.com/kinect
2STAIR: STanford Artificial Intelligence Robot – http://stair.stanford.edu
3Willow Garage: a robotics research and development centrum – http://www.willowgarage.com/

http://www.xbox.com/kinect
http://stair.stanford.edu
http://www.willowgarage.com/

2 Background 7

2.3.1 ROS communication concepts

For a decent modularity every hardware and software component of the robot is integrated
into the ROS Computation Graph4 and accessed via standardised ROS message types and
topics (channels), as illustrated in figure 2.1. The planning system will have to use these ROS
interfaces, for instance to inquire the current position or to instruct a planning component.

Actuators

Sensors

Data processors Input devices

ROS master

Visualization

R
O

S
 n

e t
w

or
k

Figure 2.1: ROS Computation Graph, a peer-to-peer network with one central coordinator

In addition to stateless message topics, ROS provides services5, which combine a request with
a reply message (see figure 2.2). Furthermore the actionlib package provides actions6 that
combine a goal message with an interim feedback message and a result message. Therefore
services and actions can be used for efficient and reliable control of subroutines, whereas the
success of commands sent via messages has to be verified by listening on a separate message
topic, if available.

Figure 2.2: Basic ROS communication concepts message topic and service (ROS Wiki, 2013b)

2.3.2 Available interfaces on used robot

All component interfaces for the service robot are listed as follows, divided into sensors, data
processors, actuators and visualization/input devices. These can be used to define actions

4ROS Computation Graph: peer-to-peer network of ROS processes – http://wiki.ros.org/ROS/Concepts
5ROS services: RPC-like request-reply-interactions – http://wiki.ros.org/Services
6ROS actionlib stack: standardized interface for interfacing with preemptable tasks – http://wiki.ros.org/actionlib

http://wiki.ros.org/ROS/Concepts#ROS_Computation_Graph_Level
http://wiki.ros.org/Services
http://wiki.ros.org/actionlib

2 Background 8

and conditions in the planning system. The more of them the planning system can perceive or
control, the better it should perform.

2.3.2.1 Sensors

Odometry: Position via message topic and via coordinate frame infrastructure

Bumper status: Pushed and locked states via message topic

Laserscanner: Range data from front and rear laserscanner via message topic

Battery status: Charge state and charging state via diagnostics message topic

Camera/Kinect: Image via message topic, point cloud via message topic

Manipulator: Joint positions via message topic, pose via coordinate frame infrastructure

2.3.2.2 Data processors

Planar map: Online from laserscanner generated map via message topic and service

Spacial map: Online from kinect point cloud generated OctoMap7 via message topic

2.3.2.3 Actuators

Bumper reset: Commandable via message topic

Platform movement:

• Directly commandable by means of translational and rotational velocity via message topic

• Controlled by means of target position in map frame via action

Manipulator movement:

• Directly by means of joint velocities, accelerations and positions via message topics

• Delegated by means of joint-wise target positions via service

• High-level controlled by means of target gripper pose and avoidance of self or environment
collision via action

7OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees - http://octomap.github.io

http://octomap.github.io

2 Background 9

2.3.2.4 Visualization and interaction devices

Computer: Visualization of robot data via RViz8

Game controller: Haptic, analog user input

Loudspeaker: Commandable via message topic

Speech synthesis: Commandable via message topic

Tablet: Visualization and user input

8RViz: 3D visualization tool for ROS – http://www.ros.org/wiki/rviz

http://www.ros.org/wiki/rviz

3 Concurrent work

In the research and the development of robots and virtual agents several task planning and
behaviour specifications have been created. This chapter gives an overview of a subset of
existing methods related to robotics.

3.1 Finite State Machines

The historical common way of behaviour control are finite state machines (FSM). Using condi-
tions a FSM switches between statically linked states. This can be used on any higher or lower
level of control. Respective to the level the states can represent algorithm steps, actions or
tasks.

There are a number of tools and libraries available for the development of state machines. One
example is SMACH, which is integrated into the software framework used with the Scitos robot
and described in the next section.

3.1.1 State Machine implementation: SMACH

SMACH9 is a library for state machines written in Python by Bohren and Cousins (2010). In
addition to being available as package smach in ROS, it has been extended with ROS-specific
states in the package smach_ros (ROS Wiki, 2013a). Developed in 2010, it is now used in a
wide number of projects (Meeussen, 2012).

Though SMACH is defined as a state machine, its states do not directly describe a full state
of the environment, but rather a directed graph of interconnected activities. When the machine
switches to a state, that state’s activity code is executed. The activity code dictates the state’s
outcome, which leads to the next state, according to the statically linked states graph.

9SMACH is a contraction derived from StateMACHine and pronounced like “smash” (Bohren and Cousins, 2010).

3 Concurrent work 11

Experience with SMACH

SMACH has been used for the robot to set up simple task sequences. For each kind of sub-
task, e.g. waiting for a message, calling an action service or waiting for user input dedicated
smach.State subclasses exist or were written. The complex ones are parameterized when
they are used. To prevent redundant parameterization all over the various task definitions, nearly
every action got its own state class. Examplary actions are waiting for a goal message, opening
or closing the gripper, navigating to a goal or moving the arm in a look-around pattern.

Composing a complex task based on such subtasks then simply means to add their states
to a smach.StateMachine and choose which state should follow another state’s outcome.
Access to the state machine’s UserData structure can be defined for each state to enable data
handover where needed.

Example state

As SMACH will be important for a later part of this paper, this section gives a short look at
how a custom smach.State is used. In the following example code a state is constructed
that forwards a given (x, y, yaw) tuple via the ROS network to the action server that is
responsible for navigating the robot platform to a given position.

Therefore the predefined smach_ros.SimpleActionState is extended to combine the nec-
essary action message generation in one state:

1 class MoveBaseState(smach_ros.SimpleActionState):
2 """Calls a move_base action server with the goal (x, y, yaw)

from userdata"""
3 def __init__(self, frame='/map'):
4 SimpleActionState.__init__(self, 'move_base', MoveBaseAction,

input_keys=['x', 'y', 'yaw'], goal_cb=self._goal_cb)
5 self.frame = frame
6

7 def _goal_cb(self, userdata, old_goal):
8 goal = MoveBaseGoal()
9 goal.target_pose.header.frame_id = self.frame

10 goal.target_pose.header.stamp = rospy.Time.now()
11 quat = tf.transformations.quaternion_from_euler(0, 0,

userdata.yaw)
12 goal.target_pose.pose.orientation = Quaternion(*quat)
13 goal.target_pose.pose.position = Point(userdata.x,

userdata.y, 0)
14 return goal

3 Concurrent work 12

Example state machine

The state machine graph 3.1 on page 15 shows a simple smach.StateMachine used to let
the robot patrol between two given goal poses. Among others it uses the MoveBaseState

explained before.

Though SMACH itself is functional and comfortable, it cannot be used for dynamic behaviour
planning as the states representing actions are linked statically and cannot be freely ordered at
runtime.

3.2 Task execution environment for robotics

The task execution environment for robotics (teer) is a library written in Python that uses tasks
in the form of co-routines to implement a high-level executive (ROS Wiki, 2012). Teer is meant
to be an alternative to SMACH. Accordingly, while facilitating the operation of parallel tasks, teer
belongs to the executive layer and does not feature any high-level task planning itself.

3.3 Goal oriented action planning

The goal oriented action planning (GOAP) pattern was designed to improve the behaviour of
non-player characters in computer games (Orkin, 2003) and originates in the Stanford Research
Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971).

Though being designed for software agents, it can also be used for hardware agents, providing
“benefits at both development and runtime” (Orkin, 2003, p. 4). For example, subtle behaviour
improvements come for free when planning in real time (Orkin, 2005, p. 5). In unsuitable situa-
tions GOAP might not be able to determine a plan. But a plan returned by the planner is assured
to be valid, in contrast to hand coded processes (Orkin, 2003, p. 5).

Different agents can simply use the same GOAP system by having different subsets of all actions
available (Orkin, 2003, p. 5). This can likewise be used for different robots, cases of application
or levels of behaviour complexity.

3.3.1 Details of GOAP

Goals define a desired change in the representational attributes of the agent or its environment
(Orkin, 2003, p. 8).

The agent’s abilities are each defined as an action. Actions combine a functionality with ad-
ditional information needed by the planner. These are preconditions, effects and cost metrics

3 Concurrent work 13

(Orkin, 2003, p. 2). Preconditions must be valid before the action can be executed. Effects are
changes to the world introduced by the action. Cost metrics allow the planner to find the optimal
plan, i.e. the plan with least total cost of all possible plans.

A plan, which is determined at runtime by the planner, specifies a list of actions that change all
involved attributes from their current state to the state defined in the goal. An example is shown
in figure 3.2, where a plan leading from start to goal was found. Attributes not mentioned by the
goal are ignored unless they get involved by actions.

goal node

start node

node 1 node 2

node 3

action A

action A

action B

action C

no matching
action available

Figure 3.2: Simple example of a node graph containing one path between start and goal node

The functionality of an action can be any kind of code, but of course should target the actions
declared effects. Whether those effects are assured or merely promised to be valid after per-
forming the action depends on the implementation details. For example, in a virtual, abstract
world where the action’s effects could be totally reliable, specific functionality code would be ob-
solete. But in a real world, where any unforeseen event might disturb the functionality’s outcome,
it might be necessary to check whether the post action state matches the effects.

3.3.2 Existing GOAP implementations

There are at least two reference projects that implement a GOAP mechanism:

Thesis: Emotional GOAP Klingenberg (2010) used to simulate emotional agents. The devel-
opment is based on GOAP by Orkin, extending it with emotional aspects. It is written in Java for
an agent simulation environment.

3 Concurrent work 14

Game library: pyGOAP Theden (2010) implemented GOAP in the context of Pygame10, a
game oriented Python library collection. Named pyGOAP, the module “tries to let virtual char-
acters come alive through planning” (Theden, 2010).

10Pygame: a free set of Python modules designed for writing games - http://www.pygame.org/

http://www.pygame.org/

3 Concurrent work 15

Figure 3.1: SMACH state machine example: patrolling between two goal poses – displayed us-
ing SMACH’s own introspection viewer

4 Analysis & Design

In this chapter the functional and nonfunctional requirements for a robotic task planning system
are explained.

The task planning system is developed using the Goal Oriented Action Planning (GOAP) con-
cept. GOAP has been considered usable in various use cases (Orkin, 2005; Klingenberg, 2010;
Theden, 2010). Providing an effective method to accomplish task planning, GOAP can be specif-
ically designed to the problem.

For each requirement a design decision is conluded for the implementation of the Robotic Goal
Oriented Action Planning system named RGOAP.

4.1 Functional requirements

There are a lot of mandatory criteria that a GOAP system must fulfill as well as optional variations
and improvements. Which of these are useful and applicable for the intended operation purpose
is determined in this section.

Orkin (2003, 2005) describes several criteria for a GOAP system in computer games. Most of
them can be adapted to a real robot. Dini et al (2006) name a number of criteria a successful
planning system should fulfill. They are intended for simulated agents in virtual worlds like a
computer game, but most of them are applicable to a real robot, too.

The following sections enumerate criteria while classifying them as required, reasonable, op-
tional or irrelevant: Required criteria are essential for a GOAP system to work. Reasonable
criteria are not mandatory for a GOAP system, but seem to be of avail for a robotic GOAP sys-
tem. Therefore they are expected to be more interesting than the optional criteria. Criteria rated
as irrelevant are not applicable to this planning system’s robotic use case or explicitly ignored in
this development.

Note that the fundamental functioning of GOAP as described in the section 3.3 on page 12 is
not explicitly repeated in these criteria but to be followed nonetheless.

4 Analysis & Design 17

4.1.1 Required criteria

The required criteria are split into the sections action definitions, precondition types, planning
algorithm and cost metrics.

4.1.1.1 Action definitions

Variable actions Actions can be implemented in a discrete and a generic manner (Orkin, 2003,
p. 10). For example, one action that can move the robot to any position is more useful than
individual actions for each position in the environment. As a consequence that action’s
preconditions and effects need to be defined not only by discrete values but variables. This
feature must be implemented as a robot must be able to handle the endless possibilities
of the continuous, real world.

Context effect function Orkin (2005, p. 4) proposed an optional context effect function “which
runs arbitrary code after the action completes execution”. It is unclear whether this means
that every action’s effect is blindly applied symbolically when processing the action. In
the real world it is uncertain whether the robot or its environment will end exactly as the
action’s effects promise. Therefore a method for arbitrary code is necessary and the list
of effects might only be used for planning, but not blindly while executing a plan.

4.1.1.2 Precondition types

The preconditions, that are required for an action to be valid for executing, should be imple-
mented as two different types of preconditions: symbolic planner preconditions and freeform
context preconditions (Orkin, 2003, p. 10).

Symbolic planner preconditions These preconditions are the important ones for the GOAP
planner, as they can be satisfied by other actions’ (symbolic) effects. Both the symbolic
planner preconditions and the effects have to match with their symbolic condition to the
list of conditions concerned by the planner.

Freeform context preconditions These preconditions must also be satisfied for an action to
work, but no other action could satisfy those purposively, so the planner cannot make use
of them except for checking. Freeform context preconditions can be “any piece of code
that results in a Boolean value” (Orkin, 2003, p. 10).

Though it would be better to have actions available to satisfy every kind of precondition,
this feature is considered to be likely necessary. For example, in the distributed ROS
network the connection to an action server can be checked to know if the action can
actually be performed. Though that does not imply that an alternative solution would be
available, separating context preconditions from symbolic preconditions seems valuable
for future diagnostics.

4 Analysis & Design 18

4.1.1.3 Planning algorithm

Ignored conditions Those conditions that are semantically not relevant for the goal do not have
to be included in the goal’s list of preconditions. While planning for a goal, these irrelvant
conditions should be ignored until they are involved in a helpful action.

Graph algorithm GOAP converts the problem of finding a list of actions to satisfy the goal to a
graph theory problem. In that graph the optimal path, i.e. with minimum total cost between
start node and end node, has to be found. For path finding many algorithms exist, among
them A*, which is widely used (Siciliano et al, 2009, p. 607) and usually faster than others
(Matthews, 2002, p. 105). Orkin (2005), Theden (2010) and Klingenberg (2010) use A*
to implement a GOAP system. Because the planning system – with its high-level nature
– indeed has to be optimal, and the fact that A* is widely and successfully used, this
development uses A* for the prototype.

Search direction An A* planner can be built to search progressively or regressively. For the
GOAP system’s graph “a regressive search is more efficient and intuitive” (Orkin, 2003, p.
7). Although this means that the robot cannot execute the first action before the full path
is calculated, this is negligible as the task planning is expected to require much less time
than the robot’s movements.

4.1.1.4 Cost metrics

To find the optimal path in the planning graph the cost of a path must be quantifiable. The
path can be split into the known part, i.e. the found path from the goal node to the current
node (planning regressively), and the unknown part, i.e. the to-be-planned gap from the current
node to the start node (Orkin, 2003, p. 7). The known part can be summed up from all nodes
belonging to the found path leading to the current node. The unknown part must be estimated
using some heuristics.

Node cost A node’s cost can simply be transcribed from the node’s action. While this needs
every action to define a cost value, a default action cost can be used. Also, cost metrics
can be used “to force A* to consider more specific actions before more general ones”
(Orkin, 2005, p. 4).

Heuristics The heuristics estimate the cost between two nodes, specifically two world states.
A very simple solution would be to take the number of their unsatisfied conditions (Orkin,
2005, p. 4) as the estimate.

Heuristics upper bound As one important criteria the heuristics must not overestimate the
minimum path (Siciliano et al, 2009, p. 607). If they do, the algorithm might not yield the
optimal path: a different path might be chosen which in total has higher costs than the
overestimated path, but has lower costs than the estimated costs of that overestimated
path.

4 Analysis & Design 19

4.1.2 Reasonable criteria

The reasonable criteria are split into the sections world representation, planning extensions and
failure recovery.

4.1.2.1 World representation

Information attributes In Orkin (2005, p. 2) a WorkingMemoryFact contains various attributes
aside the fact value, for example position, direction, stimulus, object and desire. The
WorkingMemory provides query functions to search for facts that match certain attributes.
Which information is needed for a robotic GOAP system has to be evaluated.

Confidence In addition, each knowledge fact can contain a confidence value (Orkin, 2005, p.
3) to improve planning with vague inputs. Dini et al (2006, p. 2) entitle this problem partial
observability and refer to Ghallab et al (2004), resolving this with probability information.

4.1.2.2 Planning extensions

Action duration As the robot itself takes some time to complete actions involving robot move-
ment, it might be helpful to integrate an estimated action duration into the cost metrics.

Action ordering The planner could be modified “to enforce orderings of e.g. two specific se-
quenced actions” (Orkin, 2005, p. 5). Although it might help in certain cases this seems
to be inessential by now. But both action and goal definitions should not need to express
orderings of specific actions.

Multiple action results Non-determinism of actions can be handled by naming more than one
possible result, each with different probability (Dini et al, 2006, p. 2).

4.1.2.3 Failure recovery

Recovery planning If the robot’s world is sufficiently complex and uncertain, a plan can be-
come invalid during execution, which “motivates having an execution and monitoring sys-
tem put on top of a simple planner” (Dini et al, 2006, p. 2).

The simplest method of recoverying from action failure is to simple replan with an updated
world representation. Optionally a dynamic replanning could be implemented for a faster
switch to a fallback/alternative plan.

4 Analysis & Design 20

Precomputed recovery policies In case of plan execution failure replanning is inevitable. This
can simply be done when needed, accepted the pause while replanning. As an alternative,
especially when dealing with highly dynamic environments, Dini et al (2006, p. 4) suggests
to use precomputed policies for every possible post-action world state.

4.1.3 Optional criteria

The optional criteria are split into timing constraints and multiple goals.

4.1.3.1 Timing constraints

Real-time planning The planning system contemplated for the robot does not need to support
any real time criteria. Planning will only happen on a high level, the actions which move
the robot or its manipulator will resort to existing controllers that handle the movement
from start to end.

Asynchronous precondition calculation For the same reason as for real-time planning it is
not necessary to compute any expensive preconditions asynchronously as suggested in
Orkin (2005, p. 2).

4.1.3.2 Multiple goals

For a complex robot with many capabilites it might not be possible to define one goal that fits
every task. So a user has to activate the currently preferred goal from a list of concurrent goals.
To automate this task and lessen the need for user interaction an arbitrator needs to select one
of the available goals.

Goal generation To make the goals reactive to the current environment, “a sensor may gen-
erate a list of potential tactical positions” (Orkin, 2005, p. 1), for which goals can be
created dynamically. Gordon and Logan (2004) control a game agent using dynamically
generated goals with flexible goal prioritization depending on the agent’s situation.

Goal relevancy When choosing between multiple goals relevancy attributes can improve the
decision towards the desired behaviour. This is also named desirability of goals (Dini et al,
2006, p. 3). That relevancy can be calculated by the goal itself (Orkin, 2003, p. 1).

Goal categories To handle different levels of autonomous behaviour goals can be categorized,
for example as relaxed, investigative or aggressive (Orkin, 2003, p. 1). This might help the
autonomous goal activator to choose the best category according to the current amount
of user input.

4 Analysis & Design 21

4.1.4 Irrelevant criteria

Teamwork “Distributed plans and teamwork” (Dini et al, 2006, p. 2) are not relevant because in
the robot’s major use cases no other robot or planning agent is involved.

Authorability Dini et al (2006, p. 5) declare the authorability as whether those who will have
to use the planning system to e.g. express a story in a computer game are able to use
the system for their purpose. This paper’s planning system does not concern any special
usability and is, for now, targeted to be used by robot programmers, not anyone that might
use a specific or simplified language.

4.2 Nonfunctional requirements

The developed planning system has to meet the following nonfunctional requirements.

4.2.1 Autonomous behaviour

In the end the task planning should enable the robot to behave more autonomous in choosing
his actions and more robust to disturbances as described in section 1.1 Development goals.

4.2.2 For use within ROS

Because it will primarily be used by the robot running ROS, the planning system should follow the
ROS developer guide and make use of various ROS infrastructure aspects like packages, com-
munication, logging and parameters to ease the planning systems usage and maintenance.

4.2.3 For students’ use

The resulting system has to be practically usable for future students of the lab working on hard-
ware or software components for the robot. The students should be able to integrate those into
the robot’s behaviour.

4 Analysis & Design 22

4.2.4 Programming language

The ROS framework can be used within various languages11, whereas only C++ and Python
are fully supported and widely used within ROS.

The planning system should be implemented using Python12. Python is a common language for
simple and fast but versatile programming. Also SMACH (introduced on page 10) is written in
Python. Using the same language allows for easier code reuse or interconnection of RGOAP
and SMACH if needed. The type flexibility and therefore compatibility of Python had also been
a reason for SMACH to be developed in Python (Bohren and Cousins, 2010, p. 20).

11ROS client libraries: http://wiki.ros.org/Client Libraries
12Python: Programming language – http://www.python.org/

http://wiki.ros.org/Client Libraries
http://www.python.org/

5 Development

This chapter explains the implementation of the robotic goal oriented action planning system
RGOAP, following the requirements from the previous chapter. It is divided into three sections to
explain the data classes, the control flow classes and the SMACH adaptor classes separately.

The following list gives an overview of the used terminology:

GOAP The concept of a goal oriented action planning

RGOAP The robotic goal oriented action planning developed in this paper

planner The procedure that tries to find a plan for a given goal

condition A fact in the environment relevant for task planning

world state A snapshot of all known or relevant conditions

planning graph The data structure constructed while planning, containing the simulated effects
of every considered action. The graph structure is a directed, rooted tree.

nodes Every node in the planning graph contains the action considered in that step and the
world state representing that action’s effects

current node The node in the planning graph currently inspected by the planner

start node The node representing the actual environment

goal_node The node representing a world state concluded calculated from the goal definition

plan The found path, i.e. a list of actions, that converts the start world state to the goal world
state

5.1 The need for an own implementation

The reference GOAP implementations (listed in 3.3.2 on page 13) do not match the defined cri-
teria. The Emotional GOAP is written in Java, which is not the preferred choice (see requirement
programming language). The library pyGOAP is built too game centric to be used in the robot’s
environment.

5 Development 24

5.2 Package overview

The developed RGOAP library is split into packages. Those and other involved Python packages
are:

rgoap The core of the developed planning system, independent of ROS, SMACH or any other
third-party library

rgoap_ros ROS-related specializations of RGOAP classes

rgoap_smach Adapter classes to bridge RGOAP and SMACH

smach The core of SMACH, ROS independent

smach_ros Modules and specializations that interface between SMACH and ROS

package-less Classes listed without a package are exemplary, use case specific and meant to
reside in a user-code package instead of a library package like those above

5.3 Data classes

The class diagram 5.1 shows the RGOAP classes representing the data structure.

1#_condition 1#_condition

_preconditions

*

_effects

1..*

1..*

#_preconditions

rgoap.Effect
_condition : Condition
_new_value : object

rgoap.Condition
_state_name : string
- _conditions_dict : dict{string:Condition} = {}

rgoap.Precondition
_condition : Condition
_value : object
_deviation : float = None

rgoap.Action
_preconditions : list(Precondition)
_effects : list(Effect)

rgoap.Goal
_preconditions : list(Precondition)
_usability : float = 1

Figure 5.1: Class diagram of RGOAP classes representing data (methods not shown)

5 Development 25

5.3.1 Conditions

Every aspect of the real world that the RGOAP planner has to consider is stored using a
rgoap.Condition object. These conditions, known as predicate symbols in planning, are
referred to when actions declare their preconditions and effects (see criterion SYMBOLIC PLAN-
NER PRECONDITIONS). Each condition has a unique identifier name and a value.

rgoap.Condition
_state_name : string
- _conditions_dict : dict{string:Condition} = {}
+ __init__(state_name : string)
+ get_value() : object
+ add(condition : Condition)
+ get(state_name : string) : Condition
+ initialize_worldstate(worldstate : WorldState)

For each condition identifier, for example 'robot.pose', exactly one Condition object may
exist. A class scoped dictionary, mapping identifier strings to Condition instance objects, is
used when preconditions and effects reference involved conditions. Conditions are retrieved
through the syntax Condition.get('robot.pose').

The value of a condition is not restricted to any specific type. Therefore setting and reading
the value of a condition across preconditions, effects and actions has to follow a certain data
type scheme. As a benefit it is possible to use ROS messages directly as the condition’s value.
This is convenient as the value is probably received via a ROS message, and later forwarded to
another ROS node, e.g. via an action call. In such cases it would not help to unwrap and rewrap
complex message types. For example, in this prototype implementation the pose of the robot is
stored as a geometry_msgs.Pose object, rather than a (x, y, yaw) tuple.

This class has to be subclassed to implement the get_value() method. Generic subclasses
are used to ease the integration of similar world aspects, depending on its source of information.
For example, the class rgoap_ros.ROSTopicCondition easily reflects a field of a ROS
message as its own value. Sample instantiations of rgoap_ros.ROSTopicCondition are:

1 # parameters: state_name, topic, topic_class, field
2 ROSTopicCondition('robot.pose', '/odom', Odometry, '/pose/pose')
3 ROSTopicCondition('robot.bumpered', '/bumper', Bumper, '/motorstop')

5.3.1.1 Data update

Condition objects are meant to update their internal value automatically, at the latest when
get_value() is called. For example, the ROSTopicCondition updates with every message
received and returns data from the last received message on get_value().

5 Development 26

5.3.2 World state

The global state of all known conditions is stored in the class rgoap.WorldState. It contains
a private dictionary for every condition and their values, a getter and setter for that dictionary as
well as helping methods for planning.

rgoap.WorldState
_condition_values : dict{Condition:object} = {}
+ __init__(worldstate : WorldState)
+ get_condition_value(condition : Condition) : object
+ set_condition_value(condition : Condition, value : object)
+ matches(start_worldstate : WorldState) : bool
+ get_unsatisfied_conditions(worldstate : WorldState)

5.3.3 Effects

Each effect must refer to a condition. There are two classes available to create effects:
rgoap.Effect and rgoap.VariableEffect.

5.3.3.1 Static effects

Instances of rgoap.Effect hold a value. Triggering a static effect would set the referred
condition to this value. For example the ResetBumperAction declares the following effect:

1 Effect(Condition.get('robot.bumpered'), False)

This action has the effect to set the condition 'robot.bumpered' to false. The planner uses
this information directly: If this condition is true in the start world state, but false in the goal
worldstate, this effect would state that particular action as helpful, depending on further effects
and preconditions.

rgoap.Effect
_condition : Condition
_new_value : object
+ __init__(condition : Condition, new_value : object)
+ matches_condition(worldstate : WorldState, start_worldstate : WorldState) : bool

5 Development 27

5.3.3.2 Variable effects

The planning system must be able to handle the continuous nature of the robot’s environment,
see criterion VARIABLE ACTIONS. There are the following possible types of variable actions:

• The action can change a condition from any value to any other value (e.g. the robot’s
position)

• The action can change a condition from specific values to any other value (e.g. the start
value must be somehow valid)

• The action can change a condition from any value to specific values (e.g. a device could
have multiple (error) states, but only two of them can be activated intentionally)

• The action can change a condition from specific values to unrelated specific values (e.g.
from every even to every odd value)

• The action can change a condition from specific values to related specific values (e.g.
multiplying a condition’s value)

Note that with the last type of variable action the effect is sensitive to the combination of both
values, so they cannot be defined independently.

rgoap.VariableEffect
_condition : Condition
+ __init__(condition : Condition)
+ matches_condition(worldstate : WorldState, start_worldstate : WorldState) : bool
_is_reachable(value : object, start_value : object) : bool

Therefore instances of rgoap.VariableEffect do not hold a static value. Instead, the ef-
fect’s applicability can be specified in two ways, depending on the use case:

Reachability of a variable effect When subclassing VariableEffect and overriding the follow-
ing method, a variable effect can dictate whether it can reach a specific value from a given
start_value:

1 VariableEffect._is_reachable(value, start_value)

For example, the CheckForPathVarEffect used by MoveBaseAction forwards both pa-
rameters value and start_value to the navigation algorithm server to check if there is a
path available. If not overridden this method defaults to true, easily allowing for the any-to-any
variable effect.

5 Development 28

Dynamically created preconditions Every action declaring a variable effect has to override
the following abstract method, which can be seen as the precondition-counterpart for variable
effects.

1 Action._generate_variable_preconditions(
2 var_effects, worldstate, start_worldstate)

There are two reasons this method is needed:

1. An action could have multiple variable effects, which valid values somehow depend on
each other. In this method such actions can calculate combined valid start values for
those effects as needed.

2. An action being that flexible cannot name preconditions statically because of endless
possible valid values. In this method the action has to create all needed preconditions
according to this specific use between the given worldstates. The number of precondi-
tions is independent of the number of variable effects the action declares and could differ
between situations.

The generated list of preconditions returned by the subclass is used by the Action base
class in the same way as static preconditions declared by static actions. If an ac-
tion uses a subclassed variable effect that already specifies its reachability, the method
_generate_variable_preconditions() can create a precondition for the conditon’s
value from start_worldstate, as the variable effect already confirmed to be valid in this
situation.

5.3.4 Preconditions

The class rgoap.Precondition represents the symbolic preconditions, implementing the
criterion SYMBOLIC PLANNER PRECONDITIONS. A precondition refers to a condition, holds a
value and optionally an allowed deviation factor. It is valid to a given worldstate, if the referred
condition equals the value with respect to the deviation (if given).

rgoap.Precondition
_condition : Condition
_value : object
_deviation : float = None
+ __init__(condition : Condition, value : object, deviation : float = None)
+ is_valid(worldstate : WorldState) : bool
+ apply(worldstate : WorldState)

For example the action class MoveBaseAction defines one precondition as:

1 Precondition(Condition.get('robot.arm_folded'), True)

5 Development 29

5.3.5 Goals

The class rgoap.Goal stores a list of preconditions that have to be satisfied for the goal to
become valid. Also defined is a numerical value representing the usability of a goal (see criterion
GOAL RELEVANCY).

rgoap

rgoap.Goal
_preconditions : list(Precondition)
_usability : float = 1
+ __init__(preconditions : list(Precondition), usability : float = 1)
+ usability() : float
+ is_valid(worldstate : WorldState) : bool
+ apply_preconditions(worldstate : WorldState)

5.3.6 Actions

For every functionality of the robot that is relevant in an autonomous behaviour a
rgoap.Action object is needed.

rgoap.Action
_preconditions : list(Precondition)
_effects : list(Effect)
+ __init__(preconditions : list(Precondition), effects : list(Effect))
+ cost() : float
+ run(next_worldstate : WorldState)
+ is_valid(worldstate : WorldState) : bool
+ check_freeform_context() : bool
+ has_satisfying_effects(worldstate : WorldState, start_worldstate : WorldState,

+ apply_preconditions(worldstate : WorldState, start_worldstate : WorldState)
_generate_variable_preconditions(var_effects : list(VariableEffect),

 unsatisfied_conditions : list(Condition)) : bool

 worldstate : WorldState, start_worldstate : WorldState)

Each action stores its preconditions and effects. The class is abstract and has to be subclassed
for every type of functionality.

The functionality (see criterion CONTEXT EFFECT FUNCTIONS) is implemented by overriding the
method run(next_worldstate). To add freeform context preconditions (criterion FREEFORM

CONTEXT PRECONDITIONS) the method check_freeform_context(), which defaults to be-
ing valid (returning true), can be overridden. An action can change its cost value from the
default cost by overriding the cost() method (see criterion ACTION DURATION), with respect

5 Development 30

to the restrictions detailed in section 5.4.2 on page 33. The functionality of the method
_generate_variable_preconditions, which is only needed for variable actions, was de-
scribed along variable effects in section 5.3.3.2.

5.3.7 Condition.set_value() vs Action.run()

The value of a condtion is retrieved via the condition itself, specifically by calling
Condition.get_value(). In contrast, setting the value of a condition is done by the
context effect function Action.run() which alters the environment directly (see criterion
CONTEXT EFFECT FUNCTION).

An alternative approach would be to give conditions a setter method like
Condition.set_value(value). Instead of executing an action’s context effect function,
the action’s effect would let the condition itself attain the new value.

Both alternatives have different pros and cons: If there is only one mechanism to set a condition,
it would make sense to implement Condition.set_value(value). In this case multiple
actions having an effect on the same condition do not need to repeat that mechanism in their
respective context effect function.

But if various mechanisms are used to set a condition (e.g. command a pose for the ma-
nipulator via trajectory action or a simple joint angle message), this cannot be handled by
Condition.set_value(value), but by implementing a separate action (with its own con-
text effect function) for each of those mechanisms. This is why RGOAP uses a context effect
function for actions rather than a value setter for conditions.

5.4 Control flow classes

The communication diagram 5.2 on the following page shows how the RGOAP classes
Planner, Introspector and PlanExecutor are called by the central class Runner, which
in turn is called by user code. In the following sections these classes are explained in detail. The
Tasker shown is an example for any instance calling the Runner and not part of any RGOAP
package (see section 6.4 on page 42).

5.4.1 Planner

The planner uses a regressive A* algorithm (see critera GRAPH ALGORITHM and SEARCH DIREC-
TION). As noted with the latter criterion, Orkin (2003, p. 7) states that a GOAP planner benefits
from a regressive planner over a forwards stepping one. This was confirmed by implementing
both type of planners until a certain point in development. As the forward planning was either

5 Development 31

1: run(goal)

1

2: plan(goal, start_worldstate)

2

4: execute(plan)

4 3: publish(plan, graph)

3

 : Planner

 : Runner : Tasker

 : PlanExecutor

 : Introspector

user code RGOAP

Figure 5.2: Communication diagram of RGOAP classes responsible for control flow

not successfull or its calculated graph of nodes was more complex and less goal oriented, all
further development concentrated on the regressive planner.

The planner’s inputs are the start world state, the goal (i.e. a list of preconditions) and a list of
available actions. From the given goal a world state is derived. The basic idea of the planner
is to find actions that match the difference between the start and goal world states. With each
considered action a new world state is computed, which results from simulating the action’s
effects. Any condition contained in a world state is ignored until involved through a precondition
or effect (see criterion IGNORED CONDITIONS).

The planner’s output, if a plan was found, is a Node object that matches the start node. As every
node contains a list of its parent nodes, the start node contains the list of action leading from
the start world state to the goal world state. An exemplary plan is shown in figure 5.3 on the
following page, in which the goal had one precondition that demands a change in the condition
'robot.pose'. Every node is named after its action, its internal id and its cost values.

5.4.2 Nodes

The class rgoap.Node is used to represent the nodes in the computed A* tree. In figure 5.4
on page 33 a sample tree is shown which contains the path displayed in figure 5.3 on the
following page). Because the planning is regressive the tree’s root lies in the goal node which is
constructed from the goal world state.

5 Development 32

Figure 5.3: RGOAP plan example – n: node’s own cost; p: path cost, summed from node to
goal; h: heuristic between node and start node; t: total cost: path plus heuristic

Each node stores the world state that the planner computed for that node, as well as the action
that would change this node’s world state to the world state of the parent node in the tree. Except
for the goal node which – being the root node – has neither an action nor a parent node.

5 Development 33

Figure 5.4: RGOAP planning graph example – n: node’s own cost; p: path cost, summed from
node to goal; h: heuristic between node and start node; t: total cost: path plus
heuristic

rgoap.Node
+ worldstate : WorldState
+ action : Action
+ possible_previous_nodes : list(Node) = []
- parent_nodes_path_list : list(Node)
- heuristic_distance : float = None
+ __init__(worldstate : WorldState, action : Action, parent_nodes_path_list : list(Node))
+ is_goal() : bool
+ parent_node() : Node
+ cost() : float
+ path_cost() : float
+ total_cost() : float
- _calc_heuristic_distance_for_node(start_worldstate : WorldState)

Node costs and planning heuristics

The cost value of a node is derived from that node’s action (see criterion NODE COST). The
heuristic (see criterion HEURISTICS) is used by the planner to estimate the costs between two
(unconnected) nodes. It compares those nodes’ world states. The heuristic cost defaults to the
number of unsatisfied conditions between those world states as the cost estimate.

5 Development 34

As the heuristic must not overestimate the unknown cost (see criterion HEURISTICS UPPER

BOUND), the cost of an action must be equal or greater than the number of conditions the ac-
tion can change. Accordingly the method Action.cost() by default returns the number of
declared effects, as every effect changes exactly one condition. Actions are allowed to override
this method, but only to return a cost higher than the default.

5.4.3 Introspection

SMACH provides a comfortable introspection mechanism within ROS, named smach viewer. It
displays the structure of any SMACH state machine graphically and updates in real-time with
information about the currently active state and its data structure. This is shown in figure 3.1 on
page 15.

As both the planning net and the found plan calculated by RGOAP are graph structures, it is
possible to reuse the smach viewer to display them using the SMACH introspection viewer. An
exemplary RGOAP plan is shown in figure 5.3 on page 32, an exemplary RGOAP planning net
in figure 5.4 on the previous page.

5.4.4 Runner

The class rgoap.Runner simplifies the use of the RGOAP library. It holds all conditions and
actions defined for the robot. The runner’s methods receive a goal or a list of goals and update
the worldstate, run the planner, publish the planning results via introspection, execute the plan
and repeat the process until the goal is achieved (see criterion RECOVERY PLANNING). This
manner is shown in sequence diagram 5.5 on the following page.

Multiple Goals

To create a continuous autonomous behaviour for the robot the class rgoap.Runner accepts a
list of goals (see MULTIPLE GOALS criteria). First of all, the list is sorted by the goals’ usability (see
criterion GOAL RELEVANCY). If a plan is found for the most usable goal, that plan is executed.
If no plan is found, or the execution was not successful (returning aborted), the second most
usable goal is tested.

This is repeated until either no goals are left or a plan could be executed successfully. Only
when the plan execution returns with preempted as outcome, the loop is terminated to forward
the preempted state to the upper caller. As the preemption (see section 5.5.2 on page 37) is
purposively done on user input it is important to observe this signal.

5 Development 35

 : Planner : PlanExecutor : Runner : WorldState : Introspector

: plan(worldstate, goal) : Node

: execute(start_node : Node) : bool

: update()

: get_value(condition) : object

: run(goal)

: publish(plan, graph)

: publish_update(node)

Figure 5.5: Sequence diagram of the Runner class planning and executing a goal

5.5 Connecting RGOAP and SMACH

The interface between RGOAP and SMACH consists of three parts:

• Integrating SMACH states in RGOAP, to reuse functionality written in states within RGOAP

• Executing RGOAP plans in SMACH, to use SMACH’s execution behaviour with RGOAP
plans

• Invoking the RGOAP planner from any regular SMACH state machine

They can be used independently as well as in combination.

5.5.1 Integrating SMACH states in RGOAP

Some functionality for the robot had previously been implemented using SMACH states and
state machines. To avoid reimplementing existing functionality and code redundancy, function-
ality written in SMACH structures should be reusable within RGOAP. That is why the following
subproblems have to be solved:

1. Wrap each SMACH state to a RGOAP action

5 Development 36

2. Provide action details like preconditions, effects, context checks and a cost value

3. Convert the data between a rgoap.WorldState and a smach.UserData, for states
that rely on data input to parametrize their functionality

The planner needs each action to have requirements and effects defined. These cannot be
concluded automatically from the SMACH state’s parameters or even its code. Therefore it is
not possible to design a generic wrapper that can handle every SMACH state.

5.5.1.1 SMACHStateWrapperAction

The wrapper class rgoap_smach.SMACHStateWrapperAction inherits from
rgoap.Action for being used in the RGOAP planning and wraps a smach.State that
represents the actual functionality:

«rgoap.Action»
rgoap_smach.SMACHStateWrapperAction

+ state : smach.State
+ __init__(state : smach.State, preconditions : list(Precondition),

+ translate_worldstate_to_userdata(next_worldstate : string,

+ translate_userdata_to_worldstate(userdata : smach.UserData,

+ run(next_worldstate : rgoap.WorldState)

 effects : list(Effect), **kwargs :)

 userdata : smach.UserData) : rgoap.WorldState

 next_worldstate : rgoap.WorldState)

Wrapped in a rgoap_smach.SMACHStateWrapperAction any SMACH state can be con-
sidered by the RGOAP planner.

Simple use case: instantiation If the wrapped state does not need any data from the world
state, SMACHStateWrapperAction can be used without subclassing. Only the state, effects
and preconditions are required as shown in the following example:

1 fold_arm_action = SMACHStateWrapperAction(
2 get_move_arm_to_joint_positions_state(ARM_POSE_FOLDED),
3 [Precondition(Condition.get('arm_can_move'), True),
4 Precondition(Condition.get('robot.arm_folded'), False)],
5 [Effect(Condition.get('robot.arm_folded'), True)]
6)

The method SMACHStateWrapperAction.run() overrides the abstract method
Action.run() to forward the call to the wrapped state’s execute() method.

5 Development 37

Complex use case: subclassing For more complex or communicative states the class
SMACHStateWrapperAction has to be subclassed. A full example is listed in the ap-
pendix A.2 on page 55.

Subclassing allows to override the method translate_worldstate_to_userdata().
This is responsible for the conversion of data from the next_worldstate, which is
the rgoap.WorldState the SMACHStateWrapperAction is planned to achieve, to the
smach.UserData structure, which the state will use for data input. Accordingly via
translate_userdata_to_worldstate() the state’s output is translated back to the world
state.

A dictionary, mapping condition identifiers to userdata fields, does not suffice as an alternative
to those translation methods, because the datatypes used on both sides often do not match.

5.5.2 Executing RGOAP plans as SMACH container

Besides providing a comfortable visualization (see section 5.4.3 Introspection), the SMACH ex-
ecution mechanism has one major advantage over the plan executor: While the latter one first
checks, if every action in the path is valid to be executed and then executes it, SMACH also
provides an preemption mechanism:

From outside the executed state machine a preemption request can be expressed. Every state
of that machine can, when active, check whether a preemption is requested. Usually only states
whose execute method contains looping or waiting code check for the request. The request can
be ignored or accepted. When accepted, the state returns preempted as its outcome, in contrast
to succeeded, aborted or any other outcome declared by the state. If every surrounding SMACH
state container passes the preempted outcome to the surrounding one, the state container on
the root level returns with preempted.

To let SMACH execute a RGOAP plan the following subproblems must be solved:

1. Convert the plan to a structure executable by SMACH

2. Add every node in the path to that structure

Executable structure

The SMACH executor can operate on smach.Container implementations like
smach.StateMachine or smach.Sequence. A StateMachine with the outcomes suc-
ceeded, preempted or aborted is used to represent the RGOAP plan. Figure 5.6 on the next
page shows the SMACH container that is generated from the RGOAP plan shown in figure 5.3
on page 32.

5 Development 38

Figure 5.6: RGOAP generated SMACH state machine example

Add nodes to structure

For every node in the path that node’s action can be of type SMACHStateWrapperAction

(see section 5.5.1.1 on page 36), which means this action already wraps a SMACH state. This
state is directly added to the state machine. In every other case the node has to be converted
to a smach.State using the wrapper rgoap_smach.RGOAPNodeWrapperState.

«smach.State»
rgoap_smach.RGOAPNodeWrapperState

+ node : rgoap.Node
+ __init__(node : rgoap.Node)
+ execute(userdata : smach.UserData) : string

The class RGOAPNodeWrapperState overrides the method State.execute() to forward
the call to the run() method of the wrapped node’s action.

5 Development 39

5.5.3 Invoking RGOAP from SMACH

Being able to execute RGOAP plans using smach is essentially useful when combined with
the ROS actionlib interface13. The smach_ros.ActionServerWrapper makes any given
SMACH state container available to the ROS network via an action server. The action server
can be commanded to execute its configured state machine by any ROS node. In addition,
any ROS node can cancel the currently active action request. This preemption request (see
section 5.5.2) is handled by the state machine, and eventually returned. An action server can
return either succeeded, preempted or aborted, the outcome triple used by many action-centric
SMACH states and state containers.

The class rgoap_smach.RGOAPRunnerState provides the missing link between this state
machine and the RGOAP planning system. Using this wrapper the runner can be invoked in
form of a SMACH state.

«smach.State»
rgoap_smach.RGOAPRunnerState

runner : rgoap.Runner
+ __init__(runner : rgoap.Runner)
+ execute(userdata : smach.UserData) : string
+ request_preempt()
+ service_preempt()
_build_goals() : list(Goal)

The abstract method _build_goals() has to be implemented in a subclass. Examples are
listed in the next chapter. The methods request_preempt() and service_preempt()

forward the preemption request from the enclosing state machine to the inner state machine
that is planned and executed by the runner.

An interaction of the RGOAPRunnerState is visualized in the overview diagram 6.1 on
page 43.

13ROS actionlib stack: standardized interface for interfacing with preemptable tasks – http://wiki.ros.org/actionlib

http://wiki.ros.org/actionlib

6 Use case: the robot

The developed planning system RGOAP has been validated using abstract tests. In this chapter
RGOAP is used to improve the behaviour of the real robot Scitos. To connect the robot’s inter-
faces (listed in section 2.3.2 on page 7) with the RGOAP library the following subclasses and
instances have been composed.

6.1 Defined conditions

The following condition symbols have been used in the robot’s use case.

6.1.1 MemoryConditions

A rgoap.MemoryCondition represents the value of a memory variable, which can be used
for local, virtual conditions. In addition it can be used to mock a normal condition, which is con-
venient when writing tests. If no other element will change that condition’s variable in memory,
the condition returns the given value forever.

arm_can_move Provisionally defined condition mock. The arm-moving actions already depend
on this being true.

awareness Provisionally defined condition mock. The variable is used as an abstract metric of
the robot’s awareness of its surroundings.

6.1.2 ROSTopicConditions

These conditions are created using rgoap_ros.ROSTopicCondition (see section 5.3.1 on
page 25):

robot.pose representing the robot’s pose in the map, which is the global base coordinate frame

robot.bumpered representing the boolean bumper state

robot.arm_folded represents whether the arm’s pose reflects a certain folded pose

6 Use case: the robot 41

robot.arm_pose_floor represents whether the arm’s pose reflects a certain pose pointing to
the floor

6.2 Defined actions

The following actions have been used in the robot’s use case:

6.2.1 Pure RGOAP actions

These actions directly subclass rgoap.Action.

ResetBumperAction Reset the bumper to reactivate the platform’s drive.

6.2.2 Actions wrapping SMACH states

These actions subclass SMACHStateWrapperAction (see section 5.5.1.1 on page 36):

MoveBaseAction Command the base navigation to move the robot to a goal

LookAroundAction Pan the arm with the wrist-mounted camera around to perceive the sur-
roundings (wrapping a smach.StateMachine that encloses a smach.State for each
arm pose), increasing the awareness variable by one.

FoldArmAction Move the arm to a pose which is inside the robot’s footprint for safe driving,
placing the wrist-mounted camera at eye height.

MoveArmFloorAction Move the arm to a pose (inside the robot’s footprint) that points the
wrist-mounted camera to the floor in front of the robot for obstacle detection while driving.

6.3 Defined goals

The following goals have been used in the robot’s use case:

6.3.1 Static goals

LocalAwarenessGoal Requires the awareness condition to increase. Used to trigger the
LookAroundAction.

6 Use case: the robot 42

6.3.2 Generated goals

See criterion GOAL GENERATION for more information.

TaskPosesGoalGenerator Generates a MoveToPoseGoal for every goal pose given via user
input. The usability of these goals decreases the older the user input is.

HectorExplorationGoalGenerator Sends a path planning request to an other process running
in the ROS network, namely hector_exploration_node14 which aims for exploring
unknown parts in the map. If a plan is returned, a MoveToPoseGoal for the target pose
of that plan is created.

RandomGoalGenerator Generates a MoveToPoseGoal for a given number of randomly com-
puted poses around the robot’s current position.

6.4 Tasker

The tasker is the central task control program for the robot Scitos. It is includes various tasks
in an smach_ros.ActionServerWrapper to be controllable via any other ROS process.
The tasks are SMACH states, whereas the ones of type rgoap_smach.RGOAPRunnerState

activate the RGOAP planning system. One task, the Autonomous RGOAP Loop, features the
goal generation described in the previous section.

An interaction overview of the RGOAPRunnerState is depicted in diagram 6.1 on the following
page.

14hector_exploration_node: node providing exploration plans to unknown environments –
http://wiki.ros.org/hector_exploration_node

http://wiki.ros.org/hector_exploration_node

6 Use case: the robot 43

Execute action

[not preempted]
succeeded

preempted

aborted

[action left]
next state

[plan finished]

Wait for task

[on task request]

task RGOAP

task Y

task X
task request

Tasker <<smach.StateMachine>>

RGOAP_GENERATED_SMACH

RGOAP task <<RGOAPRunnerState>>

preemption

Plan goal

aborted/replan

succeeded or preempted/wait for next task

activate task

cancel task

task status

TaskControl GUI

TASK RGOAP

TASK X

TASK Y

CANCEL TASK

convert task to rgoap.Goal

Figure 6.1: Interaction overview diagram of RGOAP

7 Evaluation

In this chapter the compliance of the developed planning system RGOAP to the requirements
listed in chapter 4 is evaluated. In the analysis section several criteria for a robotic goal oriented
action planning system have been described and classified. The following sections list in detail
which of those have been implemented within RGOAP.

7.1 Functional requirements

The functional requirements have been met as follows:

7.1.1 Required criteria

All of the criteria classified as required have been implemented.

7.1.1.1 Action definitions

Variable actions Implemented

Implemented using variable effects and generated preconditions.

Context effect function Implemented

Implemented in method rgoap.Action.run().

7.1.1.2 Precondition types

Symbolic planner preconditions Implemented

Implemented as instance of class rgoap.Precondition.

Freeform context preconditions Implemented

Implemented in method rgoap.Action.check_freeform_context().

7 Evaluation 45

7.1.1.3 Planning algorithm

Ignored conditions Implemented

The planner ignores any condition not included by the goal’s or action’s preconditions or
effects.

Graph algorithm Implemented

The RGOAP planner is realized as an A* algorithm.

Search direction Implemented

The implemented A* search proceeds regressively.

7.1.1.4 Cost metrics

Node cost Implemented

A RGOAP node takes its cost from the wrapped action.

Heuristics Implemented

A heuristic is calculated using the number of unsatisfied conditions.

Heuristics upper bound Implemented

The applied cost metric and heuristic calculation complies with this criterion.

7.1.2 Reasonable criteria

Some of the criteria classified as reasonable have been implemented.

7.1.2.1 World representation

Information attributes Not implemented in library

The implementation does not support corresponding attributes for worldstate data yet.
But using appropriate data structures for the data type might suffice. For example, in-
stead of using geometry_msgs.Pose objects for the condition 'robot.pose', the
type geometry_msgs.PoseStamped could be used, which adds a time stamp and a
coordinate frame identifier to the mere pose.

Confidence Not implemented

This feature has been omitted.

7 Evaluation 46

7.1.2.2 Planning extensions

Action duration Not implemented

RGOAP itself has no support for action durations. Actions defined by the user code (see
chapter 6) can use any information when calculating an action’s cost, but currently no
duration is considered.

Action ordering Not implemented

This feature has been omitted.

Multiple action results Not implemented

This feature has been omitted.

7.1.2.3 Failure recovery

Recovery planning Implemented rudimentarily

The Runner class supports a try-again-loop, starting the planner with an updated world-
state and the same goal. The planner itself does not assist in replanning.

Precomputed recovery policies Not implemented

This feature has been omitted.

7.1.3 Optional criteria

Some of the criteria classified as optional have been implemented.

7.1.3.1 Timing constraints

Real-time planning Not implemented

This feature has been omitted as the robotic use case (chapter 6) showed no need for this
feature.

Asynchronous precondition calculation Not implemented

This feature was omitted for the same reason.

7 Evaluation 47

7.1.3.2 Planning extension: multiple goals

Goal generation Implemented in user code

The dynamic generation of goal objects is implemented not as part of the RGOAP library
but as part of the user code.

Goal relevancy Implemented

For goal objects a usability has been implemented. It is used to weight generated goals.

Goal categories Not implemented

RGOAP has no support for goal categories itself. The user code (see chapter 6) can
adjust the goals’ usability attribute to prioritize different goal types.

7.1.4 Irrelevant criteria

None of the criteria classified as irrelevant have been implemented.

Teamwork Not implemented

This feature has been omitted.

Authorability Not implemented

This feature has been omitted.

7.2 Nonfunctional requirements

The nonfunctional requirements have been met as follows:

7.2.1 Autonomous behaviour

The robot Scitos gained an autonomous behaviour. It can master the exemplary scenarios
described in section 1.1 Development goals. Using the multiple goals feature (see section 5.4.4)
the robot is programmed to create, check and achieve new goals autonomously and independent
from user input.

7 Evaluation 48

7.2.2 For use within ROS

The RGOAP Python packages are each put into a ROS package to streamline their usage inside
ROS. The core package rgoap uses bare console prints for logging. When the ROS-specific
package rgoap_ros is loaded, it overwrites the logging methods of rgoap with those from
rospy to use the ROS logging infrastructure.

7.2.3 For students’ use

RGOAP has not been used by anyone else yet.

7.2.4 Programming language

Python proved to be suitable for the RGOAP implementation.

8 Conclusion & Outlook

In this chapter known issues and possible further improvements of RGOAP are listed, subse-
quently this paper is recapitulated.

8.1 Known issues

The following issues have been discovered while using RGOAP:

8.1.1 Improve deviation handling

Preconditions in RGOAP can not only be valid to discrete values but also feature an optional
deviation (see section 5.3.4 on page 28). This deviation is only considered when checking if a
goal is valid (satisfied) or an action is valid to be executed in a world state. But the deviation
is not considered while planning regressively when applying preconditions to a world state. To
achieve this, a world state needs to hold not only a value for each condition, but also the summed
up deviation factor.

8.1.2 Precondition-effect-symmetry

An action that defines a static effect, also has to define a precondition on the same condition.
For example the ResetBumperAction declares to set the condition 'robot.bumpered' to
false, but only if the condition currently evaluates to true:

1 class ResetBumperAction(Action):
2 def __init__(self):
3 Action.__init__(self,
4 [Precondition(Condition.get('robot.bumpered'), True)],
5 [Effect(Condition.get('robot.bumpered'), False)])
6 # ...

Though the action does not care about the previous state of that condition, the planner needs
the precondition to make the currently inspected world state approach the start world state.
Instead of defining such an effect-precondition pair, the action indeed can declare a variable

8 Conclusion & Outlook 50

effect (see 5.3.3.2 on page 27), which suits the from-any-value-to-false effect in this case bet-
ter, as the condition can be True, False or None. But then the action has to implement
Action._generate_variable_preconditions(), only to copy the current value.

This has to be considered to make actions work. RGOAP should be modified to simplify us-
age and reduce error-proneness. Effects without a belonging precondition should be handled
automatically.

8.1.3 Actions can change conditions accidentally

Actions can change everything in the environment from within their context effect function
(see 5.3.6 on page 29). But changing something that is integrated into the RGOAP planner
as a condition is problematic. For example, the LookAroundAction moves the robot’s arm
around, but does not specify at all in which pose it will reside afterwards:

1 class LookAroundAction(SMACHStateWrapperAction):
2 def __init__(self):
3 SMACHStateWrapperAction.__init__(self,
4 get_lookaround_smach(glimpse=True),
5 [Precondition(Condition.get('arm_can_move'), True)],
6 [VariableEffect(Condition.get('awareness'))])
7 # ...

The plan executor checks each action that is about to be executed if it is valid in the current
environment and aborts the execution when invalid. Though the runner (see 5.4.4 on page 34)
will then replan for the same goal, which eventually will be achieved, it would be better if the
planner could create a correct plan in the first place.

8.2 Further improvements

The following aspects are expected to improve RGOAP, but have not been implemented yet.

8.2.1 Use common data structure in RGOAP and SMACH

The RGOAP system could be built upon SMACH and reuse its data and control struc-
tures to avoid the additional data translation between those components. The structure
smach.UserData is actually a dictionary made thread-safe, and has no restrictions on the
values’ types (Bohren and Cousins, 2010, p. 20). It could be similar enough to advocate for
reusing this structure. To retain RGOAP’s independence of any other third-party library an own
but compatible structure could be used which eases data transfer.

8 Conclusion & Outlook 51

8.2.2 Alternative planning algorithms

The dynamic A* (D*) algorithm extends A* with an efficient replanning (Stentz, 1995). When an
executed action fails, the A* algorithm has to plan again for the new situation. D* can be more
efficient when replanning from a newly void plan (Dudek and Jenkin, 2010, p. 206).

D* Lite by Koenig and Likhachev (2002) is an algorithmically different approach to solve replan-
ning. It yields the same paths as D* but “appears to be even slightly more efficient”.

8.3 Ending

The goal of this paper was to develop a robotic task planning system for an autonomous service
robot. A planning system that can be used with the service robot Scitos from the Robot Vision
Lab and integrated into the robot’s current software environment was needed.

The requirements were listed and analysed, leading to design decisions that were observed
in the implementation of RGOAP. This paper demonstrated the development of RGOAP as a
GOAP-based task planning system which is implemented as a third-party-independent library in
Python.

The supplementary package rgoap_ros provides ROS-specific subclasses to connect the
planning system to messages and services from the ROS network. The classes from the ad-
ditional rgoap_smach package facilitate the combination of RGOAP and SMACH, allowing to
integrate RGOAP as part of existing SMACH user code, as well as the availability of RGOAP as
a ROS-typical action server.

RGOAP has also been successfully used to give the service robot Scitos a more autonomous
behaviour, whereby the robot continually searches for possible goals and tries to achieve them.
Goals created from user input are prioritized over self-generated ones. Though RGOAP works
well currently it can be further improved in functionality and usability.

Bibliography

[Bohren and Cousins 2010] BOHREN, J. ; COUSINS, S.: The SMACH High-Level Executive
[ROS News]. In: IEEE Robotics Automation Magazine 17 (2010), Nr. 4, p. 18–20. – ISSN
1070-9932

[Dini et al 2006] DINI, Don M. ; VAN LENT, Michael ; CARPENTER, Paul ; IYER, Kumar: Building
robust planning and execution systems for virtual worlds. Defense Technical Information Cen-
ter, 2006. – URL http://www.aaai.org/Papers/AIIDE/2006/AIIDE06-009.
pdf. – date visited: 2013-03-13

[Dudek and Jenkin 2010] DUDEK, Gregory ; JENKIN, Michael: Computational principles of
mobile robotics. 2. ed. Cambridge [u.a.] : Cambridge Univ. Press, 2010. – ISBN 0-521-
69212-1, 978-052-169-212-0, 978-052-187-157-0

[Fikes and Nilsson 1971] FIKES, Richard E. ; NILSSON, Nils J.: Strips: A new approach
to the application of theorem proving to problem solving. In: Artificial Intelligence 2
(1971), Nr. 3–4, p. 189–208. – URL http://www.sciencedirect.com/science/
article/pii/0004370271900105. – date visited: 2013-02-28. – ISSN 0004-3702

[Ghallab et al 2004] GHALLAB, Malik ; NAU, Dana ; TRAVERSO, Paolo: Automated planning:
theory and practice. Amsterdam u.a. : Elsevier, Kaufmann, 2004 (The Morgan Kaufmann
Series in Artificial Intelligence). – ISBN 1-55860-856-7

[Gordon and Logan 2004] GORDON, Elizabeth ; LOGAN, Brian: Game over: You have
been beaten by a GRUE. In: Challenges in Game Artificial Intelligence: Papers from the
2004 AAAI Workshop, AAAI Press, Menlo Park, CA, URL http://www.aaai.org/
Papers/Workshops/2004/WS-04-04/WS04-04-004.pdf. – date visited: 2013-
10-29, 2004, p. 16–21

[Hägele et al 2011] HÄGELE, Martin ; BLÜMLEIN, Nikolaus ; KLEINE, Oliver: Wirtschaftlichkeit-
sanalysen neuartiger Servicerobotik-Anwendungen und ihre Bedeutung für die Robotik-
Entwicklung. In: Eine Analyse der Fraunhofer Institute IPA und ISI im Auftrag des BMBF,
Fraunhofer Gesellschaft (2011). – URL http://www.autonomik.de/documents/
EFFIROB_2011_07_21_72dpi_oI.pdf. – date visited: 2013-10-09

[IFR Statistical Department 2013] IFR STATISTICAL DEPARTMENT: World Robotics 2013 -
Executive Summary / IFR Statistical Department. URL http://www.worldrobotics.
org/uploads/media/Executive_Summary_WR_2013.pdf. – date visited: 2013-
10-26, 2013. – Research Report

[Klingenberg 2010] KLINGENBERG, Arne: Prototypische Entwicklung eines emotionalen
Agenten auf der Basis des Goal Oriented Action Plannings, HAW Hamburg, Ph.D. thesis,

http://www.aaai.org/Papers/AIIDE/2006/AIIDE06-009.pdf
http://www.aaai.org/Papers/AIIDE/2006/AIIDE06-009.pdf
http://www.sciencedirect.com/science/article/pii/0004370271900105
http://www.sciencedirect.com/science/article/pii/0004370271900105
http://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-004.pdf
http://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-004.pdf
http://www.autonomik.de/documents/EFFIROB_2011_07_21_72dpi_oI.pdf
http://www.autonomik.de/documents/EFFIROB_2011_07_21_72dpi_oI.pdf
http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf
http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf

Bibliography 53

february 2010. – URL http://edoc.sub.uni-hamburg.de/haw/volltexte/
2010/964/. – date visited: 2013-10-18

[Koenig and Likhachev 2002] KOENIG, S. ; LIKHACHEV, M.: Improved fast replanning for
robot navigation in unknown terrain. In: IEEE International Conference on Robotics and
Automation, 2002. Proceedings. ICRA ’02 Volume 1, 2002, p. 968–975 vol.1

[Kortenkamp and Simmons 2008] KORTENKAMP, David ; SIMMONS, Reid: Robotic Systems
Architectures and Programming. In: PROF, Bruno S. (Editor) ; PROF, Oussama K. (Edi-
tor): Springer Handbook of Robotics. Springer Berlin Heidelberg, january 2008, p. 187–
206. – URL http://link.springer.com/referenceworkentry/10.1007/
978-3-540-30301-5_9. – date visited: 2013-10-29. – ISBN 978-3-540-23957-4, 978-
3-540-30301-5

[Matthews 2002] MATTHEWS, James: Basic A* pathfinding made simple. In: AI Game Pro-
gramming Wisdom (2002), p. 105–113

[Meeussen 2012] MEEUSSEN, Wim: Re: Current state of SMACH in ROS.
february 2012. – URL http://ros-users.122217.n3.nabble.com/
Current-state-of-SMACH-in-ROS-tp3749748p3751229.html. – date
visited: 2013-11-05

[Orkin 2003] ORKIN, Jeff: Applying goal-oriented action planning to games. In: AI Game
Programming Wisdom 2 (2003), Nr. 1, p. 217–227

[Orkin 2005] ORKIN, Jeff: Agent architecture considerations for real-time planning in games.
In: Proceedings of the Artificial Intelligence and Interactive Digital Entertainment (2005). –
URL http://www.aaai.org/Papers/AIIDE/2005/AIIDE05-018.pdf. – date
visited: 2013-03-01

[Quigley et al 2009] QUIGLEY, Morgan ; CONLEY, Ken ; GERKEY, Brian ; FAUST, Josh ;
FOOTE, Tully ; LEIBS, Jeremy ; WHEELER, Rob ; NG, Andrew Y.: ROS: an open-
source Robot Operating System. In: ICRA workshop on open source software Vol-
ume 3, URL http://pub1.willowgarage.com/~konolige/cs225B/docs/
quigley-icra2009-ros.pdf. – date visited: 2013-06-04, 2009

[ROS Wiki 2012] ROS WIKI: executive_teer - ROS Wiki. march 2012. – URL http:
//wiki.ros.org/executive_teer. – date visited: 2013-03-15

[ROS Wiki 2013a] ROS WIKI: executive_smach - ROS Wiki. january 2013. – URL http:
//wiki.ros.org/executive_smach. – date visited: 2013-11-09

[ROS Wiki 2013b] ROS WIKI: ROS/Concepts - ROS Wiki. october 2013. – URL http:
//wiki.ros.org/ROS/Concepts. – date visited: 2013-11-13

[ROS Wiki 2013c] ROS WIKI: ROS/Introduction - ROS Wiki. october 2013. – URL http:
//wiki.ros.org/ROS/Introduction. – date visited: 2013-11-06

[Siciliano et al 2009] SICILIANO, Bruno ; SCIAVICCO, Lorenzo ; VILLANI, Luigi ; ORIOLO,
Giuseppe: Robotics: modelling, planning and control. London : Springer, 2009 (Advanced
textbooks in control and signal processing). – ISBN 978-1-8462-8641-4

http://edoc.sub.uni-hamburg.de/haw/volltexte/2010/964/
http://edoc.sub.uni-hamburg.de/haw/volltexte/2010/964/
http://link.springer.com/referenceworkentry/10.1007/978-3-540-30301-5_9
http://link.springer.com/referenceworkentry/10.1007/978-3-540-30301-5_9
http://ros-users.122217.n3.nabble.com/Current-state-of-SMACH-in-ROS-tp3749748p3751229.html
http://ros-users.122217.n3.nabble.com/Current-state-of-SMACH-in-ROS-tp3749748p3751229.html
http://www.aaai.org/Papers/AIIDE/2005/AIIDE05-018.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://wiki.ros.org/executive_teer
http://wiki.ros.org/executive_teer
http://wiki.ros.org/executive_smach
http://wiki.ros.org/executive_smach
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction

Bibliography 54

[Stentz 1995] STENTZ, Anthony: The Focussed D* Algorithm for Real-Time Replanning.
In: Proceedings of the International Joint Conference on Artificial Intelligence Volume 95,
URL http://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/s/
stentz_D2.pdf. – date visited: 2013-11-09, august 1995, p. 1652–1659

[Theden 2010] THEDEN, Leif: pyGOAP - pygame - python game development. february
2010. – URL http://www.pygame.org/project-pyGOAP-1408-.html. – date
visited: 2013-10-18

[Uhl et al 2007] UHL, K. ; ZIEGENMEYER, M. ; GASSMANN, B. ; ZÖLLNER, J. M. ; DILL-
MANN, R.: Entwurf einer semantischen Missionssteuerung für autonome Serviceroboter.
In: BERNS, Karsten (Editor) ; LUKSCH, Tobias (Editor): Autonome Mobile Systeme 2007.
Springer Berlin Heidelberg, january 2007 (Informatik aktuell), p. 103–109. – URL http:
//link.springer.com/chapter/10.1007/978-3-540-74764-2_16. – date
visited: 2013-10-29. – ISBN 978-3-540-74763-5, 978-3-540-74764-2

http://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/s/stentz_D2.pdf
http://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/s/stentz_D2.pdf
http://www.pygame.org/project-pyGOAP-1408-.html
http://link.springer.com/chapter/10.1007/978-3-540-74764-2_16
http://link.springer.com/chapter/10.1007/978-3-540-74764-2_16

A Code examples

A.1 Subclassing VariableEffect

The class CheckForPathVarEffect from the following listing subclasses VariableEffect
to override _is_reachable(), in which move_base, the ROS node responsible for two-
dimensional navigation, is queried if a path is available.

1 class CheckForPathVarEffect(VariableEffect):
2 def __init__(self, condition):
3 VariableEffect.__init__(self, condition)
4 self.service_topic = '/move_base/make_plan'
5 self._service_proxy = rospy.ServiceProxy(self.service_topic,

GetPlan)
6 self._planned_paths_pub =

rospy.Publisher('/task_planning/goal_paths', Path)
7

8 def _is_reachable(self, value, start_value):
9 request = GetPlanRequest()

10 request.start.header.frame_id = '/map'
11 request.start.pose = start_value
12 request.goal.header.frame_id = '/map'
13 request.goal.pose = value
14 request.tolerance = 0.2 # meters in x/y
15 response = self._service_proxy(request)
16 self._planned_paths_pub.publish(response.plan)
17 return len(response.plan.poses) > 0

A.2 Subclass of SMACHStateWrapperAction

The class MoveBaseAction from the following listing extends from SMACHStateWrapperAction

to reuse the functionality of an existing SMACH state. This wrapped state is of type
MoveBaseState. This action uses one variable effect CheckForPathVarEffect to po-
tentially reach every possible pose. The pose data is translated to the smach.UserData

structure, which is passed to the wrapped state. In its check_freeform_context() method
the connection to the navigation node is checked.

A Code examples 56

1 class MoveBaseAction(SMACHStateWrapperAction):
2

3 class CheckForPathVarEffect(VariableEffect):
4 def __init__(self, condition):
5 VariableEffect.__init__(self, condition)
6 self.service_topic = '/move_base/make_plan'
7 self._service_proxy =

rospy.ServiceProxy(self.service_topic, GetPlan)
8 self._planned_paths_pub =

rospy.Publisher('/task_planning/goal_paths', Path)
9

10 def _is_reachable(self, value, start_value):
11 request = GetPlanRequest()
12 request.start.header.frame_id = '/map'
13 request.start.pose = start_value
14 request.goal.header.frame_id = '/map'
15 request.goal.pose = value
16 request.tolerance = 0.2 # meters in x/y
17 response = self._service_proxy(request)
18 self._planned_paths_pub.publish(response.plan)
19 return len(response.plan.poses) > 0
20

21 def __init__(self):
22 self._condition = Condition.get('robot.pose')
23 self._check_path_vareffect =

MoveBaseAction.CheckForPathVarEffect(self._condition)
24 SMACHStateWrapperAction.__init__(self, MoveBaseState(),
25 [Precondition(Condition.get('robot.bumpered'),

False),
26 Precondition(Condition.get('robot.arm_pose_floor'),

True)],
27 [self._check_path_vareffect])
28

29 def check_freeform_context(self):
30 if not

self.state._action_client.wait_for_server(rospy.Duration(1)):
31 rospy.logwarn("%s context check: cannot access move_base

action server"
32 % self.__class__.__name__)
33 return False
34 try:
35 self._check_path_vareffect._service_proxy.wait_for_service(1)
36 except rospy.exceptions.ROSException:
37 rospy.logwarn("%s context check: cannot access %s service

server"
38 % (self.__class__.__name__,

A Code examples 57

39 self._check_path_vareffect.service_topic))
40 return False
41 return True
42

43

44 def _generate_variable_preconditions(self, var_effects,
worldstate, start_worldstate):

45 effect = var_effects.pop() # this action has one variable
effect

46 assert effect._condition is self._condition
47 precond_value =

start_worldstate.get_condition_value(Condition.get('robot.pose'))
48 return [Precondition(effect._condition, precond_value, None)]
49

50 def translate_worldstate_to_userdata(self, next_worldstate,
userdata):

51 goal_pose =
next_worldstate.get_condition_value(Condition.get('robot.pose'))

52 (_roll, _pitch, yaw) =
tf.transformations.euler_from_quaternion(

53 pose_orientation_to_quaternion(goal_pose.orientation))
54 userdata.x = goal_pose.position.x
55 userdata.y = goal_pose.position.y
56 userdata.yaw = yaw

Versicherung über Selbständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung ohne
fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 15.11.2013

	List of Figures
	Nomenclature
	1 Introduction
	1.1 Development goals
	1.2 Thesis structure

	2 Background
	2.1 Planning architectures
	2.2 The robot Scitos
	2.2.1 Current capabilities of the robot
	2.2.2 Current control architecture of the robot

	2.3 Software & ROS
	2.3.1 ROS communication concepts
	2.3.2 Available interfaces on used robot

	3 Concurrent work
	3.1 Finite State Machines
	3.1.1 State Machine implementation: SMACH

	3.2 Task execution environment for robotics
	3.3 Goal oriented action planning
	3.3.1 Details of GOAP
	3.3.2 Existing GOAP implementations

	4 Analysis & Design
	4.1 Functional requirements
	4.1.1 Required criteria
	4.1.2 Reasonable criteria
	4.1.3 Optional criteria
	4.1.4 Irrelevant criteria

	4.2 Nonfunctional requirements
	4.2.1 Autonomous behaviour
	4.2.2 For use within ROS
	4.2.3 For students' use
	4.2.4 Programming language

	5 Development
	5.1 The need for an own implementation
	5.2 Package overview
	5.3 Data classes
	5.3.1 Conditions
	5.3.2 World state
	5.3.3 Effects
	5.3.4 Preconditions
	5.3.5 Goals
	5.3.6 Actions
	5.3.7 Condition.set_value() vs Action.run()

	5.4 Control flow classes
	5.4.1 Planner
	5.4.2 Nodes
	5.4.3 Introspection
	5.4.4 Runner

	5.5 Connecting RGOAP and SMACH
	5.5.1 Integrating SMACH states in RGOAP
	5.5.2 Executing RGOAP plans as SMACH container
	5.5.3 Invoking RGOAP from SMACH

	6 Use case: the robot
	6.1 Defined conditions
	6.1.1 MemoryConditions
	6.1.2 ROSTopicConditions

	6.2 Defined actions
	6.2.1 Pure RGOAP actions
	6.2.2 Actions wrapping SMACH states

	6.3 Defined goals
	6.3.1 Static goals
	6.3.2 Generated goals

	6.4 Tasker

	7 Evaluation
	7.1 Functional requirements
	7.1.1 Required criteria
	7.1.2 Reasonable criteria
	7.1.3 Optional criteria
	7.1.4 Irrelevant criteria

	7.2 Nonfunctional requirements
	7.2.1 Autonomous behaviour
	7.2.2 For use within ROS
	7.2.3 For students' use
	7.2.4 Programming language

	8 Conclusion & Outlook
	8.1 Known issues
	8.1.1 Improve deviation handling
	8.1.2 Precondition-effect-symmetry
	8.1.3 Actions can change conditions accidentally

	8.2 Further improvements
	8.2.1 Use common data structure in RGOAP and SMACH
	8.2.2 Alternative planning algorithms

	8.3 Ending

	Bibliography
	A Code examples
	A.1 Subclassing VariableEffect
	A.2 Subclass of SMACHStateWrapperAction

