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Lately, a promising method called reinforcement learning has been successfully appliedto problems in all kinds of application areas ([2], [6]). The optimal value function is learnedby letting the real system or a simulation perform the system dynamics and provide thecost. The optimal value function is then approximated using the information provided bythe system: state, cost and control. This computation may be o�-line as in game playing(the computer gains experience by playing against himself), or on-line as in heavy tra�cproblems (the computer learns about the dynamics of a data or tra�c network by actuallycontrolling it or by controlling a simulation).A lot of work has been done on reinforcement learning where the underlying systemis assumed to be discrete (in time and space), see e.g. [1], [5], [18], [19]. The problemsconsidered here are Markov Decision Problems. Generally three di�erent types for real-izing reinforcement learning can be distinguished. In Real Time Dynamic Programming(RTDP) the system dynamic is assumed to be known. The optimal value function isapproximated by letting the system perform time steps and applying dynamic program-ming in each step. In Adaptive RTDP (ARTDP) a parameterized model of the systemis stored internally and updated according to the actions of the real system. Q-learninguses no model of the system. Instead, a somewhat augmented value function, called theQ-function, is approximated.Recently, achievements have been made in generalizing the reinforcement learningconcept from Markov Decision Problems to continuous state spaces and time, see e.g.[3], [9], [14]. The problem here seems to be, that the computationally necessary discreteobservation of a continuous process (in time and space) produces an additional error,apart from the approximation error that comes from the function approximation. Arigorous formulation of this error is important for the construction of learning algorithms,especially for local error estimation as a stopping criterion for learning or for adaptivegrid re�nement.Our approach is similar to the numerical treatment of the Bellman equation as in [4],[8] and [13]. We use these numerical methods to generalize the Q-learning concept towork with fully continuous systems.We �rst discretize the process in time only (section 2). We de�ne the discrete timedata which is used by the learning agent to control the (discrete time) system. A semi-2



continuous version of the Q-function is de�ned, and a regularity and consistency result ispresented.In section 3 we introduce a state space discretization as used in numerical treatmentof the Bellman equation (see [10]). This way the trial space for the approximation of thesemi-continuous Q-function may be de�ned.Two algorithms are proposed in section 4 using this kind of function approximation inQ-learning. Theoretical results are obtained, concerning consistency and error estimation.Section 5 compares the two algorithms in a numerical experiment.A crucial point is the choice of control during the learning period. We will not discussthis question here and assume, that the control is performed by a separate device (anotherprogram, a PID controller, a person etc). The numerical experiments in section 5 use acertainty equivalence controller with random jumps.2 Formulation of the learning problemLet G � IRn be a bounded state space and A � IRm a compact set of actions. We shallassume that the process to be controlled is described by the di�erential equation_'(� ) = f('(� ); a(� ));'(0) = x 2 G: (1)We will denote a solution of this equation with'x;a(:) : IR+ ! G:We want to �nd a control function a(:) 2 A = fb : [0;1[! A; b measurable g, whichminimizes the functionalJ(x; a(:)) := Z 10 e���g('x;a(:)(� ); a(� ))d�; (2)where � > 0 is the discount rate andg : G �A! IR+3



is a cost function. We de�ne the reinforcement rt : G �A! IR�0 for t 2 [0;1] asrt(x; a(:)) = Z t0 e���g('x;a(:)(� ); a(� ))d�: (3)The optimal value function is de�ned asV (x) := infa(:)2AJ(x; a(:)) = infa(:)2A r1(x; a(:)): (4)In the following we will assume some regularity conditions on f and g.Proposition 2.1 Let f and g be Lipschitz-continuousjf(x1; a)� f(x2; a)j � Lf jx1 � x2jjg(x1; a)� g(x2; a)j � Lgjx1 � x2j (5)for constants Lf ; Lg > 0 independent of a 2 A. Then the Gronwall-Lemma gives thefollowing estimate for any to points x1; x2 2 G, � > 0 and a(:) 2 Ajg('x1;a(:)(� ); a(� ))� g('x2;a(:)(� ); a(� ))j � Lgjx1 � x2jeLf� :This also implies the Lipschitz-continuity of rt(:; :) in the �rst componentjrt(x1; a)� rt(x2; a)j � Lgjx1 � x2je(Lf��)t � 1Lf � � =: Lrjx1 � x2j: 2We shall also assume, that f and g are boundedf : G �A! IRn is bounded by jjf(x; a)jj �Mf 8x; a;g : G�A! IR is bounded by 0 � g(x; a) �Mg 8x; a (6)It is known that under the above assumptions V is the unique viscosity solution of thecontinuous time, continuous state Bellman Equationinfa2AfDV (x)f(x; a)� �V (x) + g(x; a)g = 0; x 2 G: (7)For viscosity solutions see [11] where also further literature is given. Numerical solutionsfor equation (7) have been studied by various authors, see e.g. [7], [8], [10].4



We will assume, that the functions f and g are completely unknown to the controllingagent (only their existence is assumed, however). The discount factor � shall be known.The controlling agent therefore has the possibility to control the system and observe theoutcome. He shall control in time steps of size h > 0, using control functions a 2 Ah,where Ah � fb : b 2 Aj[0;h[g a �nite subset. At discrete time step n 2 IN he gains thefollowing information� the current state yn 2 G,� an action an 2 Ah,� the subsequent state yn+1 := 'yn;an(h)� the local cost rn := rh(yn; an) = R h0 e���g('yn ;an(� ); an(� ))d� .Note, that it may be assumed that the cost has the given (local) form. If only the totalaccumulated, discounted reinforcement~rn = Z (n+1)h0 e���g('x;a(� ); a(� ))d�for some starting point '(0) = x was given, then with the knowledge of � we couldcalculate rn = e�nh(~rn � ~rn�1):We will use the Q-learning approach to reinforcement learning. This means, thatneither the system nor the cost function is being identi�ed by the observed data and nomodel for the system is being used (Q-learning is sometimes de�ned to be a model-freeway of reinforcement learning). Instead, the optimal value function is learned directly viathe Q-function. Although being quite memory e�cient, Q-learning has the disadvantageof converging very slowly. We use it here, because theoretical investigations are quiteconvenient. Many faster algorithms can be constructed, using more memory (eligibilitytraces, models for system or cost etc., see also [1]). Our results extend easily to thesecases.We now de�ne the semi-discrete optimal value function Vh and the Q-function Qh.5



De�nition 2.2 and Theorem Let B(G; IR) := fv 2 Map(G; IR) : v bounded g be thespace of bounded functions on G. We de�ne the operatorTh : B(G; IR)! B(G; IR)(Thv)(x) = mina2Ahfrh(x; a) + e��hv('x;a(h))g: (8)Then there is a unique Vh 2 B(G; IR) withThVh = Vh and supx2G jVh(x)j � Mg� : (9)The Qh-function is now de�ned asQh : G�Ah ! IR+;Qh(x; a) := rh(x; a) + e��hVh('x;a(h)): (10)We also denote elements of Ah as a. Note, that they are A-valued functions on [0; h].Proof. We show that Th is a contraction on B(G; IR). Clearly, B(G; IR) is a Banach-space with norm jjvjj = supx2G jv(x)j:Let v;w 2 B(G; IR). Then for all x 2 G there is a control a 2 Ah such that(Thv)(x)� (Thw)(x) � rh(x; a) + e��hv('x;a(h))� rh(x; a)� e��hw('x;a(h))� supy2G e��h(v(y)�w(y)):Therefore we have jjThv � Thwjj � e��hjjv � wjj:The boundedness in jj:jj-norm is clear, since g is bounded and we have for an arbitrarycontrol function a(:)Vh(x) � Z 10 e��tg('x;a(:)(t); a(t))dt �Mg Z 10 e��tdt = Mg� : 2The following corollary follows easily from the de�nition.6



Corollary 2.3 From (9) we have immediatelyVh(x) = mina2AhQh(x; a): (11)2The Qh-function is introduced here, because it allows an iteration for approximationof the value function without using a model of the system and the cost, but only theobserved information yn, an, yn+1, rn. This can be seen when substituting Vh('x;a(h)) in(10) with mina2Ah Qh('x;a(h); a). Using only the observed informationyn = x; an = a; yn+1 = 'x;a(h); rn = rh(x; a);then (10) has the following formQh(yn; an) = rn + e��h mina2AhQh(yn+1; a):Note, that for the application of Th as in (8), the complete knowledge of rh(:; :) is necessary.In the following Lemma we show that Qh is itself a �xed point of a contraction.Lemma 2.4 De�ne the space of bounded functions on G�Ah (the space of Q-functions)B(G�Ah) := fq(:; :) : G �Ah ! IR; supx2G;a2Ah q(x; a) <1g:De�ne the operator Ph : B(G�Ah)! B(G�Ah)(Phq)(x; a) = rh(x; a) + e��h minb2Ah q('x;a(h); b); x 2 G; a 2 Ah:Then the iteration qi+1 = Phqifor any starting point q0 2 B(G�Ah) converges to a unique �xed point qh 2 B(G �Ah)and qh = Qh:7



Proof. The proof uses the contraction property of Ph with respect to the normjjqjj = supx2G;a2Ah q(x; a):It is clear, thatB(G�Ah) is a Banach space. The last assertion follows from the uniquenessof the �xed point, when equation (11) is used in (10). 2The next lemma proves a regularity result for Vh.Lemma 2.5 Let � > Lf . Then Vh 2 C0;1(G) andjVhj0;1 = supx6=y jVh(x)� Vh(y)jjx� yj � LV := Lg�� Lf :Proof. For the boundedness in the j:j0;1-semi norm we show, that for any V 2 B(G)with jV j0;1 � LV we also have jThV j0;1 � LV . From the uniqueness of the �xed point ofTh and the closedness of C0;1(G) \ B(G) � B(G) the assertion follows. Let jV j0;1 � LVand x; y 2 G, x 6= y. Thenj(ThV )(x)� (ThV )(y)j � maxa2Ah nZ h0 e��� jg('x;a(� ); a(� ))� g('y;a(� ); a(� ))jd�+e��hjV ('x;a(h))� V ('y;a(h))jo� Z h0 Lgjx� yje(Lf��)�d� + e��hLV jx� yjeLfh= Lgjx� yje(Lf��)h � 1Lf � � + LV jx� yje(Lf��)h:Division with jx� yj and substitution of LV givesjThV j0;1 � Lg� � Lf = LV : 2The lemma shows, that Vh has the same regularity as the solution of the semi-continuous Bellman-equation if it is discretized as in [8]. Note, that Vh uses exact in-formation for cost and subsequent state (see de�nition of Th), while in [8] the local cost8



and subsequent state are approximated (by trapezoidal rule and Euler-step). Similarestimates as in [8] can be easily shown, i.e. regularity of Vh for � = Lf and � < Lf .As expected, Vh converges to the viscosity solution of the fully continuous Bellman-equation if h ! 0. The proof is held short, since it follows the same ideas as in [7]. Forthe de�nition of a viscosity solution we also refer to [7].Theorem 1 For every h 2 IR+ de�neAch = fa : [0; h[! A constant g:Then for the value function Vh with respect to Ach we have Vh ! V uniformly in G ash! 0, where V is the viscosity solution ofinfa2AfDv(x)f(x; a)� �v(x) + g(x; a)g = 0; x 2 G: (12)Proof. The proof follows essentially the argumentation of the proof of Theorem 2.2 in[7]. We �rst have from Theorem 2.5 and the Arzel�a-Ascoli compactness criterion, that forsome subsequence hp ! 0 as p!1,Vhp ! V; locally uniformly in IRn:For easier notation we will call this subsequence h and let h ! 0. We will now checkone inequality in the de�nition of viscosity solution of (12), namely, let � 2 C1(IRn), andV � � take a local maximum in x, thenmaxa2A (�V (x)� nXi=1 @�(x)@xi f(x; a)� g(x; a)) � 0:Take � 2 C1(IRn) and assume x0 is a local maximum for V � �. In some closed ball Bcentered at x0 we have xh ! x0; h! 0;where xh is a maximum point for Vh � � on B. Then for any a 2 Ach the point 'xh;a(h)is in B, provided h is small enough. Therefore we haveVh(xh)� �(xh) � Vh('xh;a(h))� �('xh;a(h));9



for all a 2 Ach. This leads to0 = maxa2AchfVh(xh)� e��hVh('xh;a(h))� Z h0 e���g('xh;a(� ); a(� ))d�g� maxa2Achf�(xh)� �('xh;a(h)) ++(1� e��h)Vh('xh;a(h))� Z h0 e���g('xh;a(� ); a(� ))d�g:Since � 2 C1(IRn) for some 0 � �ah � h we have0 � maxa2Ach(� nXi=1 @�@xi ('xh;a(�ah)) + 1� e��hh Vh('xh;a(h))� 1h Z h0 e���g('xh;a(� ); a(� ))d�) :Passing to the limit h ! 0 gives the assertion. Equally we show the other inequality inthe de�nition of the viscosity solution. With the uniqueness of the viscosity solution wehave Vh ! V independent of the subsequence and the proof is completed. 23 State space discretizationAccording to [10] we now discretize the state space with simplices fSjg. De�ne thediscretization parameter k = maxj fdiam Sjg:We denote the vertices of the simplices as fxjgNj=0. We also de�neGk := fx0; : : : ; xNg; and X := (x0; : : : ; xN);the set and the tuple of all vertices.The trial space for the optimal value function will be the set Vk of all continuous,piecewise a�ne functions w : G! IRVk := fw 2 C(G)jrw(x) = cj in Sjg ;for constants cj . The approximate Q-functions will be taken from the spaceWkh := fq(:; :) : G�Ah ! IR; 8a 2 Ah : q(:; a) 2 Vk and supx2G;a2Ah q(x; a) <1g:10



Both Vk and Wkh are Banach-spaces with respect to the normsjjwjj := supxi2Gk jw(xi)j and jjqjj := supxi2Gk ;a2A jq(xi; a)j:Similarly to the discrete time case it is also shown, that the operatorP kh :Wkh !WkhP kh (q)(x; a) = rh(x; a) + e��h minb2Ah q('x;b(h); b); x 2 Gk; a 2 Ahhas a unique �xed point Qkh 2 Wkh . P kh updates the function q in all vertices x 2 Gkand a 2 Ah simultaneously. This corresponds to a Jacobi-type iteration. We de�ne thefully-discrete optimal value functionV kh 2 Vk; V kh (x) = mina2Ah Qkh(x; a): (13)We will now show, that for k ! 0 we havejjV kh � Vhjj ! 0;and we also give an estimate for jjV kh � Vhjj.Theorem 2 Let � > Lf , h 2]0; 1� [. Then it holds thatsupx2G;a2Ah jV kh (x; a)� Vh(x; a)j � LgC�(�� Lf ) kh; (14)for some constant C.Proof. Let x 2 G with representation x = PNi=1 �ixi in barycentric coordinates. SinceV kh 2 Vk, we have V kh (x) =PNi=1 �iV kh (xi). Then��V kh (x)� Vh(x)�� � NXi=1 �ijV kh (xi)� Vh(xi)j+ NXi=1 �ijVh(xi)� Vh(x)j: (15)From (13) we have at the vertices xi for some control a 2 AhjV kh (xi)� Vh(xi)j � e��hjV kh ('xi;a(h)� Vh('xi;a(h))j� e��h supy2G jV kh (y)� Vh(y)j:11



The second expression in (15) may be estimated with the Lipschitz-continuity of Vh. Thisgives jVh(xj)� Vh(x)j � LV k:Together we have supx2G ��V kh (x)� Vh(x)�� � LV k1� e��h :Bounding e��h from above by e��h � h�(1e � 1)+1, for h 2]0; 1� [, and taking as Lipschitz-constant LV = Lg��Lf , the assertion follows with C = 1 � 1e . 2The methods of proof as developed in [12] can be applied here and yield the followingtheorem.Theorem 3 Let � > Lf , h 2]0; 1� [. ThenjjV � V kh jj � C(ph+ kph);where C is a constant independent of k and h. 24 Algorithms for learningWe now turn our attention to the actual real time learning algorithm. The problem here is,that information at the vertices fxig is not always available as demanded by the operatorP kh de�ned in the last section. The update-algorithm itself cannot choose the position ofthe sample points and will therefore have to work with information at arbitrary points inG. We give two possible solutions for updating the �th-iterate q� of the Q-function Qkh inpoints fxig, when information is given in arbitrary points.De�nition 4.1 We call y 2 G a sample point at time � , if the following information isavailable. y 2 G : state at time �;a 2 Ah : action at time �;z 2 G = 'y;a(h); state at time � + h;r 2 IR+ = R h0 e���g('y;a(� ); a)d�; local cost :12



Let Gk = fx1; : : : ; xNg and X = (x1; : : : ; xN)T , as before. For any x 2 G let �(x) =(�1(x); : : : ; �N (x))T be the barycentric coordinates of x with respect to X, i.e.x = NXi=1 �i(x)xi = �(x)TX:We will also write for functions q 2 Wkhq(a) := (q(x1; a); : : : ; q(xn; a))T : (16)We then get for any x 2 G, a 2 Ahq(x; a) = �(x)Tq(a):We will also write min(q) := (minb q(x1; b); : : : ;minb q(xN; b))T ;i.e. if q� is the current iterate of the Q-function, then min(q�) is the current iterate ofthe optimal value function.4.1 Algorithm with information in verticesLets assume, that y is a sample point and coincides with a vertex xi. In every time stepwe then have the following algorithm.Q� VERTEX(y; a; z;r)determine i 2 f1; : : : ; Ng : y = xicalculate �(z)vtmp := minb2Ah �(z)Tq�(b)update q�+1(xi; a) := r + e��hvtmp (17)This update corresponds to an operatorP vey;a : Wkh !Wkh ;13



(P vey;aq)(x; b) = r + e��h�T (z)min(q); if x = y and b = a(P vey;aq)(x; b) = q(x; b); if x 6= y and b 6= a:P vey;a is only de�ned if y = xi for some i = 1; : : : ; N . It only updates the function q in thesample point y and control a. Since cost r and subsequent state z depend on starting statey and control a, the operator P vey;a does not depend explicitly on r and z (this is di�erentin a stochastic setting, where the cost and the subsequent state depend stochastically ony and a).Note, that P vey;a is not a strict contraction with respect to the sup-norm. (contractionnumber 1), since it acts only upon the vertex xi = y. The following de�nition de�nes acontraction P ve := �y2Gk�a2AhP vey;a = : : : � P vexia � : : : ;where every combination of xi 2 Gk and a 2 Ah appears exactly once. This correspondsto a Gau�-Seidel-type iteration. We do not show, that the operator P ve, which dependson the order of the operators P vey;a, is a contraction. It is easily seen, that the �xed pointof P ve is the same as of P kh .4.2 Algorithm with information in arbitrary pointsKaczmarz-Algorithm. Now we want to generalize P vey;a for arbitrary y 2 G. Givena sample point y 2 G with coordinates �(y) and a 2 Ah. The coordinates of z shall be�(z). We then de�ne the operator (in vector notation as in (16))(P kay;aq)(a) = q(a) + [r + e��h�T (z)min(q)� �T (y)q(a)] �(y)�T(y)�(y); (18)The value r + e��h�T (z)min(q) may be called the update value. The di�erence fromthe old value �T (y)q(a) to the update value is weighted with the barycentric coordinates�(y), and added to the values of q(a) in the vertices of the simplex which contains thesample point. The Kaczmarz-update has the property, that the new iterate q(a) assumesthe update value at the position y. It holds that(P kay;aq)(y; a) = �T (y)((P kay;aq)(a))= �T (y)q(a) + [r + e��h�T (z)min(q)� �T (y)q(a)]�T(y)�(y)�T(y)�(y) (19)14



= r + e��h�T (z)min(q):The Kaczmarz-algorithm and the algorithm with information in vertices are identical, ifthe sample point y is a vertex. If y = xi for some xi 2 Gk, then �(y) = ei, the i-th unitvector, and we have (P kay;aq)(a) = r + e��h�T (z)min(q) = (P vey;aq)(a): (20)In every time step the Kaczmarz-algorithm takes the following form.Q� KACZMARZ(y;a; z;r)calculate �(y)calculate �(z)vtmp := �T (z)min(q)update q�+1(a) := q�(a) + (r + e��hvtmp ��T (y)q�(a)) �(y)�T (y)�(y) (21)Since �(y) is the vector of barycentric coordinates of y with respect to X, it has onlyn+ 1 non-zero entries (number of vertices of a simplex), where n is the dimension of thestate space G � IRn. The positions in which �(y) is zero, do not contribute to the newvalue q�+1.Lemma 4.2 The Kaczmarz-algorithm can generate an approximation with arbitrarilyhigh jj:jj-norm, although the function to approximate is bounded.Proof. Consider the interval [0; 1], and let u : [0; 1]! IR be the function to approximate.We assume that we have only two vertices at �0 = 0 and �1 = 1. The approximatingfunction shall be q(�) = q0+ q1� on [0; 1]. For any two (distinct) data points �0; �1 2 [0; 1]it holds, that with the Kaczmarz-algorithm applied alternately at �0 and �1, the sequenceof iterates q�(�) = q�0 + q�1�; � = 0; 0:5; 1; 1:5; 2 : : :with q�+0:50 = q�0 + (u(�0)� q�(�0)) 1� �0(1� �0)2�20 ;15



q�+0:51 = q�1 + (u(�0)� q�(�0)) �0(1� �0)2�20 ;q�+10 = q�+0:50 + (u(�1)� q�+0:5(�1)) 1� �1(1� �1)2�21 ;q�+11 = q�+0:51 + (u(�1)� q�+0:5(�1)) �1(1� �1)2�21will converge to a q(:) such that q(�0) = u(�0) and q(�1) = u(�1).If now u is chosen, such that lim�!0 ddxu(�) =1, then the Kaczmarz-algorithm appliedalternately at �0 = 0 and �1 2]0; 1] will converge to some approximation q(:) (dependingon �1). It then holds, that q(1)!1 for �1 ! 0. 2Figure 1: The Kaczmarz-algorithm has theproperty, that it may produce an unboundedsequence of approximations (function q in the�gure), already if the function u to approximateis bounded. Kaczmarz-iteration applied alter-nately at two points �0, �1 will let the limit qconnect the data-points u(�0) and u(�1).
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0 1Despite this property, the Kaczmarz-algorithm showed good numerical results. Thismay be due to the fact, that the pathological situation from the example will rarelyoccur. In practical situations, the sample points are distributed evenly in G. However,the described property may still give problems, if Kaczmarz-algorithm is applied close tosingular points of the system.Kronecker-Algorithm. The Kronecker-algorithm gives another solution to the prob-lem of distributing a value inside a simplex to its vertices. It simply updates only in theclosest vertex.Again let y 2 G be a sample point, a 2 Ah. Let �(z) be the barycentric coordinatesof z = 'y;a(h). De�ne E(y) = (e1(y); : : : ; eN(y))T , where ej(y) = 1 ifmink jxk � yj = jxj � yj;16



and 0 otherwise. Let r = rh(y; a). We then de�ne the operator(P kry;aq)(a) = q(a) + E(y)[r+ e��h�T (z)min(q)� �T (y)q(a)]; (22)and (P kry;aq)(b) = q(b) if a 6= b.The algorithm now takes the following form.Q� KRONECKER(y;a; z;r) calculate E(y)calculate �(z)vtmp := �T (z)minb2Ah q�(b)update q�+1(a) := q�(a) + (r + e��hvtmp � q�(a))E(y)(23)Concerning convergence, the Kronecker-algorithm is similar to the algorithm withinformation in vertices.Lemma 4.3 Let Y = (y1; : : : ; yn), where y1; : : : ; yn 2 G is a set of sample points, suchthat for every vertex xj, j 2 f1; : : : ; Ng there is a unique yk such thatjxj � ykj = mini jxi � ykj:For easier notation, the corresponding points and vertices shall have the same index, suchthat jxj � yjj = mini jxi � yjj: We will also assume, that for every yj and every a 2 Ahwe have costs rh(yj; a). Let P krj := �a2AhP kryj ;a;i.e. P krj updates a Q-function in all controls a 2 Ah in the point yj. Then the iterationoperator P krY := P kr1 � : : : � P krN (24)is a contraction and for any q0 2 Wkh we have convergence of q�, � !1, whereq�+1 = P krY q�: (25)Proof. It is easily seen, that by the assumption of unique correspondence of yjto xj, the operator P krY is a contraction with respect to the jj:jj-norm in Wkh . From the�xed-point theorem we therefore have convergence of q�+1 = P krY q�. 2Generalizations of Lemma 4.3 may be formulated, e.g. the following Corollary.17



Corollary 4.4 Lemma 4.3 holds also, if for every vertex xj, j = 1; : : : ; N there is a setof sample points fyaj ga2Ah withjxj � yaj j = mini jxi � yaj j; for all a 2 Ah:The operator P krj will then have to be de�ned asP krj := �a2AhP kryaj :The �xed point qY = P krY qY clearly depends on the set of sample points fyjgNj=1. Thedi�erence between qY and Qkh is, that they are �xed points for di�erent sets of samplepoints. With the given notation we actually haveQkh = qX; X = (x1; : : : ; xn):We are interested in estimating the value jjmin(qY ) � min(Qkh)jj for some �xed pointqY = P krY qY with a given set of sample points fyjgNj=1 satisfying the conditions of Lemma4.3.Theorem 4 Let Y = (y1; : : : ; yN)T be the tuple of points fyig satisfying the conditions ofLemma 4.3. Let VY = min(qY ), where qY = P krY (q) and let V kh be as de�ned before. LetV kh be Lipschitz-continuous with Lipschitz-constant LV > 0. If � > Lf , then the followingestimate holds supz2G jVY (z)� V kh (z)j � C(k + kh) (26)for a constant C.Proof. We introduce the following notation for costs and subsequent states. De�ne thecolumn vector RY (a) for every a 2 Ah, i = 1; : : : ; N[RY (a)]i := Z h0 e���g('yi;a(� ); a)d�;and the N �N -matrix �Y (a) holding the barycentric coordinates of the 'yi;a such that[�Y (a)X]i := 'yi;a(h) (27)and similarly de�ne RX(a) and �X(a). 18



For VY and V kh we haveVY (xi) = �mina2AhfRY (a) + e��h�Y (a)VY g�i ;V kh (xi) = �mina2AhfRX(a) + e��h�X(a)V kh g�i ; i = 1; : : : ; N:The points yi have the property jyi � xij � k for all i = 1; : : : ; N . The di�erence of localcosts RY (a) and RX(b) for minimizing controls a; b 2 Ah may be estimated byj[RX(a)�RY (b)]ij � Z h0 e��� jg('xi;a(� ); a)� g('xi;a(� ); b)jd�� Z h0 e(Lf��)�Lgjxi � yijd�� Lgkh: (28)To estimate j[�Y (a)VY � �X(b)V kh ]ij, we takej'xi;a(h)� 'yi;b(h)j � jxi � yijeLfh � keLfh =: ";i = 1; : : : ; N , and the Lipschitz-continuity of V kh (v;w 2 G), to getjVY ('yi ;a(h)) � V kh ('xi;a(h))j� maxv2G maxjv�wj�" jVY (v)� V kh (w)j� maxv2G maxjv�wj�" jVY (v)� V kh (v)j+ jV kh (v)� V kh (w)j� maxv2G jVY (v)� V kh (v)j+ LV ": (29)Together with (28) and (29) we getmaxv2G jVY (v)� V kh (v)j � Lgkh+ e��h(LV ke(Lf��)h +maxw2G jVY (v)� V kh (v)j);or maxv2G jVY (v)� V kh (v)j � k(Lgh + LV e(Lf��)h)1 � e��h :We can estimate 11�e��h � 1h�c with c = (1 � 1e ) for h 2]0; 1� [, and e(Lf��)h � 1.Together we have jjVY � V kh jj � kLgc� + kh LVc� :19



This lets the constant C be equal to 1c� maxfLg; LV g. 2If actual learning is performed in real time, then a �xed set of sample points Y willnot be given, of course. The sample points may be located along the trial trajectory andwill be distributed rather arbitrarily. In the investigation of properties of the Kronecker-algorithm we want to prove a result, which states that VY for a given set of points Ysu�cing the assumptions of Lemma 4.3 lies inside a certain region which may be speci�ed.We �rst introduce some notation. De�nebox(xi) := f� 2 G : jxi � �j � jxj � �j for all j = 1; : : : ; Ng;and for any point � 2 G we writebox(�) :=[i box(xi); for all the i with � 2 box(xi):For any y 2 G de�ne the operator Ty asTy : Vk ! Vk;(Tyv)(xi) = � minb2Ah �rh(y; b) + e��hv('y;b(h))	 ; if xi 2 box(y)v(xi); else : (30)Theorem 5 Let V� and V � be the �xed points in Vk ofV�(xi) = infy2box(xi)TyV�(xi) (31)V �(xi) = supy2box(xi)TyV �(xi); xi 2 Gk: (32)Then for any v 2 Vk with V� � v � V � (33)we also have for all y 2 G V� � Tyv � V �: (34)For a set of points Y = (y1; : : : ; yn) let VY = min(qY ), where qY = P krY (qY ) is the �xedpoint as before. Then a simple consequence of (34) isV� � VY � V �: (35)20



In particular, V� � V kh � V �:Proof. It is straight forward to show that (31) and (32) are �xed point equations withrespect to the maximum norm in Vk, in particular V�; V � 2 Vk. Now let V� be a functionsu�cing (31). Let v 2 Vk with (33). With the monotonicity of Ty we getV�(xi) = infy2box(xi)TyV�(xi) � infy2box(xi)Tyv(xi) � Tyv(xi); (36)and analogously Txv(x) � V �(x). 2We have now established a region, in which a value function VY must lie for a set oftest points Y as in Lemma 4.3. In the following Theorem we prove a result about the sizeof this region.Theorem 6 Suppose that V � and V� are Lipschitz-continuous with some constant LV(since V � and V� are both bounded above by Mg� and by zero below, and V �; V� 2 Vk wecan say that LV � Mgk� ). Then the following a priori estimate holds:jjV � � V�jj � (Lr + LV )k1 � e��h : (37)Proof. Since V �; V� 2 Vk, if is su�cient to estimate the di�erence for all xi 2 Gk. Wewill write 'y;a = 'y;a(h). Let xi 2 Gk. For some points y; z 2 box(xi) and some controlb 2 U we haveV �(xi)� V�(xi) = maxv2box(xi)TvV �(xi)� minv2box(xi)TvV�(xi)= TyV �(xi)� TzV�(xi)= mina2U frh(y; a) + e��hV �('y;a)g �mina2U frh(z; a) + e��hV�('z;a)g� rh(y; b)� rh(z; b) + e��h(V �('y;b)� V�('z;b))� Lrjy � zj+ e��h(V �('y;b)� V�('y;b) + V�('y;b)� V�('z;b))� Lrk + e��h(V �('y;b)� V�('y;b)) + LV jy � zjeLfh� Lrk + e��h sup�2G(V �(�)� V�(�)) + LV keLfh21



We may now take supx2G on both sides and getjjV � � V�jj � k(Lr + LV eLfh)1� e��h : 2The Lipschitz-constant LV = Mgk� grows with decreasing grid size k. We show, thatunder some condition, LV can be chosen independently of k. This allows to conclude,that jjV � � V�jj ! 0 for k ! 0.Proposition 4.5 Assume, that for any two vertices xi; xj we have an � 2]0; 1] with�k � jxi � xjj:Also assume, that 2�e(Lf��)h < 1. Then V � and V� are Lipschitz-continuous with constantLV = 2� � Lr1� 2�e(Lf��)h :Proof. Theorem 5 stated, that V � and V� are �xed points in Vk. We will show, that iffor some V 2 Vk it holds that jV j0;1 � LV , then also��� infy2box(xi)TyV (xi)���0;1 � LV(and sup respectively). This shows, that because of uniqueness of V� (and V �) andclosedness of C0;1(G) the proposition holds. Again, since V� 2 Vk we may consider twoadjacent cells box(xj) and box(xi) with centers xj; xi. We get��� infz2box(xj)TzV�(xj)� infy2box(xi)TyV�(xi)��� = jTzV�(xj)� TyV�(xi)j;where on the right hand side we assume the existence of a z 2 box(xj) and y 2 box(xi),such that the in�ma are obtained in z; y, respectively. Furthermore, we may assume theexistence of a b 2 Ah, such thatjTzV�(xj)� TyV�(xi)j = jrh(z; b) + e��hV�('z;b)� rh(y; b)� e��hV�('y;b)j= jrh(z; b)� rh(y; b) + e��h(V�('z;b)� V�('y;b))j� jz � yj(Lr + e(Lf��)hLV ):22



We now estimate jz � yj � 2k = 2��k � 2� jxi � xjj:We may now substitute LV and with the assumption 2�e(Lf��)h < 1 we get��� infy2box(xi)TyV (xi)���0;1 � 2Lr� + e(Lf��)h 2� � Lr1� 2�e(Lf��)h= 2� � Lr1 � 2�e(Lf��)h = LV : 25 Numerical experimentsWe performed learning experiments with a linear oscillator with controllable amplitude.The system equation has the following form_y = f(y; u) := � u 1�1 u � (y� v); v = � :375:375 � ; y 2 G = [0; 1]� [0; 1]; u 2 [�c; c](38)The stationary point of the uncontrolled system is v. The eigenvalues of the system arefu+ i; u� ig.At the boundary the system trajectory shall be projected onto the boundary. Theright side of (38) therefore takes the following form at the boundary_y1 = � minf0;uy1 + y2g falls y1 = 1maxf0;uy1 + y2g falls y1 = 0 (39)_y2 = � minf0;uy2 � y1g falls y2 = 1maxf0;uy2 � y1g falls y2 = 0 : (40)The goal of the optimal control shall be steer the solution along a given trajectory instate space (see �gure 2). The reinforcement or cost function is therefore chosen to beg(y) = dist(L; y) 12 ; (41)where L denotes the set of points in the trajectory. We took the square root of thedistance, to penalize stronger when close to the given trajectory. This speeded learning23



up. Note that the restriction of g to a grid is still L-continuous (as a function in Vk). Thecost functional takes the formJ�(y; u(:)) = Z 10 e���g('y;u(:)(� ))d�: (42)For the simulation of the system (38) during the learning phase and also for calculationof the optimal value function V we discretized (38) with the implicit mid-point rule. Letyn 2 G be the nth state of the discrete time system. Then we haveyn+1 = yn + hf(12(yn + yn+1); u) (43)
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The state space was discretized in regular simplices with k = 2�n n = f3; 4; 5; 6; 7; 8g.The discount rate was chosen as � = 5. Is is clear that large discount rates give fasterlearning rates.The following pictures show the mean distance of the system trajectory from the givenL-form in one round, depending on the time steps that have passed. The dotted line showsthis value when the optimal value function V kh was used for controlling the process. Theother line shows this value during the learning process.The �rst two of the following pictures show a comparison between Kaczmarz- andKronecker-iteration. In most experiments (using di�erent k and h) the Kaczmarz-Algorithmseemed to be more stable (the mean is closer to the dotted line). For this reason we sub-sequently used Kaczmarz-Iteration.
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Figure 3: Di�erence between Kronecker- and Kaczmarz-iteration on a grid with k = 1=2n andh = 0:2.
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