Numerical Schemes for the Continuous ()-function of
Reinforcement Learning

Stephan Pareigis*

Abstract

We develop a theoretical framework for the problem of learning optimal con-
trol. We consider a discounted infinite horizon deterministic control problem in the
reinforcement learning context. The main objective is to approximate the optimal
value function of a fully continuous problem, using only observed information as
state, control, and cost. With results from the numerical treatment of the Bellman
equation we formulate regularity and consistency results for the optimal value func-
tion. These results help to construct algorithms for the continuous problem. We
propose two approximation schemes for the optimal value function which are based
on observed data. The implementation of a simple optimal control learning problem
shows the effects of the two approximation schemes.

AMS SUBJECT CLASSIFICATION: 49120, 65N30, 68105, 93C57

KEYWORDS: learning optimal control, dynamic programming, reinforcement learning,

sampled data, approximation of optimal value function

RUNNING HEAD: Numerical Schemes for the Continuous Q-Function

1 Introduction

In many optimal control problems a solution cannot be obtained by standard numerical
methods. This may be due to very large state spaces (as in game playing) or incomplete
information such as unknown system dynamics. The mathematical model of the problem

may also be either too complicated to handle or too simple to be accurate enough.

*stp@numerik.uni-kiel.de, Lehrstuhl fir Praktische Mathematik, Christian- Albrechts-Universitat Kiel,
D-24098 Kiel, Germany, tel.: +49-431-880 1421

Lately, a promising method called reinforcement learning has been successfully applied
to problems in all kinds of application areas ([2], [6]). The optimal value function is learned
by letting the real system or a simulation perform the system dynamics and provide the
cost. The optimal value function is then approximated using the information provided by
the system: state, cost and control. This computation may be off-line as in game playing
(the computer gains experience by playing against himself), or on-line as in heavy traffic
problems (the computer learns about the dynamics of a data or traffic network by actually
controlling it or by controlling a simulation).

A lot of work has been done on reinforcement learning where the underlying system
is assumed to be discrete (in time and space), see e.g. [1], [5], [18], [19]. The problems
considered here are Markov Decision Problems. Generally three different types for real-
izing reinforcement learning can be distinguished. In Real Time Dynamic Programming
(RTDP) the system dynamic is assumed to be known. The optimal value function is
approximated by letting the system perform time steps and applying dynamic program-
ming in each step. In Adaptive RTDP (ARTDP) a parameterized model of the system
is stored internally and updated according to the actions of the real system. Q-learning
uses no model of the system. Instead, a somewhat augmented value function, called the
Q-function, is approximated.

Recently, achievements have been made in generalizing the reinforcement learning
concept from Markov Decision Problems to continuous state spaces and time, see e.g.
(3], [9], [14]. The problem here seems to be, that the computationally necessary discrete
observation of a continuous process (in time and space) produces an additional error,
apart from the approximation error that comes from the function approximation. A
rigorous formulation of this error is important for the construction of learning algorithms,
especially for local error estimation as a stopping criterion for learning or for adaptive
grid refinement.

Our approach is similar to the numerical treatment of the Bellman equation as in [4],
[8] and [13]. We use these numerical methods to generalize the Q-learning concept to
work with fully continuous systems.

We first discretize the process in time only (section 2). We define the discrete time

data which is used by the learning agent to control the (discrete time) system. A semi-

continuous version of the)-function is defined, and a regularity and consistency result is
presented.

In section 3 we introduce a state space discretization as used in numerical treatment
of the Bellman equation (see [10]). This way the trial space for the approximation of the
semi-continuous ()-function may be defined.

Two algorithms are proposed in section 4 using this kind of function approximation in
QQ-learning. Theoretical results are obtained, concerning consistency and error estimation.

Section 5 compares the two algorithms in a numerical experiment.

A crucial point is the choice of control during the learning period. We will not discuss
this question here and assume, that the control is performed by a separate device (another
program, a PID controller, a person etc). The numerical experiments in section 5 use a

certainty equivalence controller with random jumps.

2 Formulation of the learning problem

Let G C IR" be a bounded state space and A C IR™ a compact set of actions. We shall

assume that the process to be controlled is described by the differential equation

P(1) = [flp(r) a(r)),
0(0) = zed. (1)

We will denote a solution of this equation with
Poa() P Ry — G

We want to find a control function a(.) € A = {b: [0,00[— A, b measurable }, which

minimizes the functional

J(wal.)) = / T GGy (), (), 2)

where p > 0 is the discount rate and

g:GxA— R4

is a cost function. We define the reinforcement r; : G x A — Rs for t € [0, 00] as

et = [(o (7): (7)) 3)

The optimal value function is defined as

V() := aé.glgA J(x,a(.)) = a(i.lglé‘Aroo(x,a(.)). (4)

In the following we will assume some regularity conditions on f and g.

Proposition 2.1 Let [and g be Lipschitz-continuous

=
~—~
8
=
S|
pa—
|
~
~—~
=
()
S|
=
N

Lf|$1 — $2|

l9(z1,a) = gz, a)| < Lyfay — 2, (5)

for constants Ly, L, > 0 independent of a € A. Then the Gronwall-Lemma gives the
following estimate for any to points x1,22 € G, 7 >0 and a(.) € A

19(P21.a()(T): (7)) = 9(Papa()(7), a(7))| < Lylzy — wa]e”'".

This also implies the Lipschitz-continuity of r4(.,.) in the first component

e(Lf_p)t —1
[ri(xr, a) — ri(ae, a)| < Lylay — $2|L7 =: L,|x; — xz)|.
F—P
O
We shall also assume, that f and ¢ are bounded
f:GxA—1IR" isbounded by ||f(z,a)|| < M; Va,a,
g:GxA—IR isbounded by 0<g(x,a) <M, VYr,a (6)

It is known that under the above assumptions V' is the unique viscosity solution of the

continuous time, continuous state Bellman Equation

inf{DV(2)f(x,a) —pV(z) + g(x,a)} =0, x €. (7)

a€A

For viscosity solutions see [11] where also further literature is given. Numerical solutions

for equation (7) have been studied by various authors, see e.g. [7], [8], [10].

We will assume, that the functions f and g are completely unknown to the controlling
agent (only their existence is assumed, however). The discount factor p shall be known.
The controlling agent therefore has the possibility to control the system and observe the
outcome. He shall control in time steps of size h > 0, using control functions ¢ € Ay,
where Ay C {b : b € A} a finite subset. At discrete time step n € IN he gains the

following information

the current state vy, € G,

e an action a, € Ay,

the subsequent state y,41 := @y, 4, (h)

the local cost r,, := rp(yn, an) = foh e g(@y an(T), an(T))dr .

Note, that it may be assumed that the cost has the given (local) form. If only the total

accumulated, discounted reinforcement

(n+1)h
- / € " g(pra(T),a(T))dr
0

for some starting point ¢(0) = x was given, then with the knowledge of p we could
calculate

r, = e””h(Fn — Fpo1).

We will use the Q-learning approach to reinforcement learning. This means, that
neither the system nor the cost function is being identified by the observed data and no
model for the system is being used (Q-learning is sometimes defined to be a model-free
way of reinforcement learning). Instead, the optimal value function is learned directly via
the @)-function. Although being quite memory efficient,)-learning has the disadvantage
of converging very slowly. We use it here, because theoretical investigations are quite
convenient. Many faster algorithms can be constructed, using more memory (eligibility
traces, models for system or cost etc., see also [1]). Our results extend easily to these
cases.

We now define the semi-discrete optimal value function Vj, and the Q)-function @)},.

Definition 2.2 and Theorem Let B(G,IR) := {v € Map(G,IR) : v bounded } be the
space of bounded functions on GG. We define the operator

T, : B(G.R) - B(G,IR)
(Tho)(x) = min{ry(z, a) + e v(pwa(h))}. (8)

aEAh
Then there is a unique V), € B(G,IR) with

M,
T,Vi=Vi and sup|Vi(z)] < —2. (9)
zeG P
The Qp-function is now defined as
Qn G xA, — Ry,
Qu(w,a) = ra(e,a) + Vil pualh)). (10)

We also denote elements of Ay, as a. Note, that they are A-valued functions on [0, A].

Proof. We show that T}, is a contraction on B(G,IR). Clearly, B(G,1IR) is a Banach-

space with norm

|[o]| = sup [v(z)].
zeG

Let v,w € B(G,IR). Then for all © € (¢ there is a control a € Ay such that

(Tho)(z) = (Tww)(x) < ralz,a) + € o(goalh)) = ra(e, a) — € w(pea(h))
< sup e (v(y) — w(y)).
Therefore we have
| Thv = Thwl|| < e=*]|o — wl].
The boundedness in ||.|]-norm is clear, since ¢ is bounded and we have for an arbitrary

control function a(.)

o0 o0 M
Vi(z) S/ ™" g(¢ua()(t), alt))dt < Mg/ e dt = —2.
0 0 P

The following corollary follows easily from the definition.

Corollary 2.3 From (9) we have immediately

Vi(2) = min Qp(x, a). (11)

aEAh

The @)p-function is introduced here, because it allows an iteration for approximation
of the value function without using a model of the system and the cost, but only the
observed information vy, @n, Ynt1, 7. This can be seen when substituting Vi (¢, q(h)) in

(10) with mingea, Qn(@ra(h),a). Using only the observed information

Y = 2, tp = @, Yn+1 = S‘Qx,a(h)a T'n = Th($,a),

then (10) has the following form
Qn(Yns an) =10 + ™" min Qn(Yni1,a).
a€Ap

Note, that for the application of T}, as in (8), the complete knowledge of 74(., .) is necessary.

In the following Lemma we show that (), is itself a fixed point of a contraction.
Lemma 2.4 Define the space of bounded functions on GG x Ay, (the space of Q-functions)

B(G x Ap) :=={q(.,.) : G x Ay, = R, sup ¢(z,a)< oo},

re€G,a€Ay

Define the operator
PhiB(GXAh)—}B(GXAh)

(Prhg)(z,a) = rp(z,a) + e=rh ggiln q(ra(h),b), x€ G a€ Ap.
h

Then the iteration

qi+1 = Pry;
for any starting point qo € B(G x Ap) converges to a unique fixed point q, € B(G X Ay)
and

qn = Qn-

Proof. The proof uses the contraction property of P, with respect to the norm

gl =" sup q(z,a).
re€G,a€Ay

[t is clear, that B(G'x Ay) is a Banach space. The last assertion follows from the uniqueness

of the fixed point, when equation (11) is used in (10). O
The next lemma proves a regularity result for V},.

Lemma 2.5 Let p > Ly. Then Vi, € COY(G) and

|Vh|0 L= sup |Vh(l’) - Vh(y)|
7 ry |z — y|

L.g
p—Ly

<LV =

Proof. For the boundedness in the |.|o1-semi norm we show, that for any V' € B(G)
with |[V]o1 < Ly we also have [T, V]o1 < Ly. From the uniqueness of the fixed point of
T), and the closedness of C%Y(G) N B(G) C B(G) the assertion follows. Let |V]o; < Ly
and z,y € G, x # y. Then

() e) = T < max{ [e lolena(r)atr) = glona(r)alr)) i

aEAh

MV (pna(h) = V(gya(h)]}

IA

h
/ Lylx — y|leBr=07dr 4+ e Ly | — y|elr"
0

(Lg=p)h _ 1
= Lyl =yl ———+ Lvle — yle0"
Ly—p
Division with |z — y| and substitution of Ly gives

b oy,

T3V]oq < =
p— Ly

a

The lemma shows, that 1}, has the same regularity as the solution of the semi-
continuous Bellman-equation if it is discretized as in [8]. Note, that V}, uses exact in-

formation for cost and subsequent state (see definition of T}), while in [8] the local cost

and subsequent state are approximated (by trapezoidal rule and Euler-step). Similar
estimates as in [8] can be easily shown, i.e. regularity of V}, for p = Ly and p < Ly.

As expected, V), converges to the viscosity solution of the fully continuous Bellman-
equation if A — 0. The proof is held short, since it follows the same ideas as in [7]. For

the definition of a viscosity solution we also refer to [7].

Theorem 1 For cvery h € IRy define
Ay =Ha :[0,h]— A constant }.

Then for the value function V, with respect to A5 we have Vi, — V uniformly in G as
h — 0, where V' is the viscosity solution of

inf{Dv(x)f(x,a)— pv(z)+ glz,a)} =0, z€d. (12)

a€A

Proof. The proof follows essentially the argumentation of the proof of Theorem 2.2 in
[7]. We first have from Theorem 2.5 and the Arzela-Ascoli compactness criterion, that for

some subsequence h, — 0 as p — oo,
Vi, =V, locally uniformly in IR".

For easier notation we will call this subsequence i and let A — 0. We will now check
one inequality in the definition of viscosity solution of (12), namely, let ¢ € C*(IR"), and

V — ¢ take a local maximum in z, then

max {pV(:L') — Z ag—ij)f(x,a) — g(:z;,a)} < 0.

a€A -
=1

Take ¢ € C'(IR") and assume ¢ is a local maximum for V' — ¢. In some closed ball B
centered at xy we have

xp — 9, h—0,

where xj, is a maximum point for V;, — ¢ on B. Then for any a € Aj, the point ¢, .(h)

is in B, provided & is small enough. Therefore we have

Vh(xh) - qb(xh) > Vh(g‘oxh,a(h)) - ¢(@wh7a(h)),

for all @ € Aj. This leads to

0 = max{Vi(en) = " Vilgs,alh) - / ¢ g(@upa(T), a(r))dr}

a€A

max{o(zy) — ¢(@aya(h)) +

a€Af

+(1—€‘”h)Vh(wh,a(h))—/o ¢ G(Pua(T); a(7))dT}.

AV

Since ¢ € C'(IR") for some 0 < (f < h we have

{— Gl @)+ V(o) 1 [e-Wg<soxh,a<r>,a<r>>dr}.

0 > max
B =1 axZ

a€Af

Passing to the limit A — 0 gives the assertion. Equally we show the other inequality in
the definition of the viscosity solution. With the uniqueness of the viscosity solution we

have V;, — V independent of the subsequence and the proof is completed. a

3 State space discretization

According to [10] we now discretize the state space with simplices {S;}. Define the

discretization parameter

k = max{diam 5;}.
J
We denote the vertices of the simplices as {l’]‘}é\fzo. We also define
G* = {xo,...,an}, and X := (x0,...,7n),

the set and the tuple of all vertices.
The trial space for the optimal value function will be the set V* of all continuous,

piecewise affine functions w : G — IR
VE = {w e C(G)|Vw(z) = ¢; in S;},
for constants ¢;. The approximate ()-functions will be taken from the space

WE={q(.,.): G x Ay, =R, VYa € Ay : q(.,a) € V¥ and sup ¢(z,a) < oo}.

re€G,a€Ay

10

Both V* and W} are Banach-spaces with respect to the norms

|[wl]| := sup |w(z;)| and ||g|| ;== sup [q(zs, a)l.
2, €GF 2, €Gk a€A

Similarly to the discrete time case it is also shown, that the operator
PFWE — WY
PHq)(x,a) = r(z,a) + e " gglr; q(pop(h),b), =€ G* ac A,
has a unique fixed point QF € WF. PF updates the function ¢ in all vertices » € G*

and a € Aj, simultaneously. This corresponds to a Jacobi-type iteration. We define the

fully-discrete optimal value function

VEevE Viaz) = min Qf(z,a). (13)
a€Ap
We will now show, that for & — 0 we have
Vi = Vill = 0,

and we also give an estimate for ||V}* — V}||.

Theorem 2 Let p > L¢, h €]0, %[Then it holds that

L
sup |V (z,a) — Vi(z,a)| < g

: (14)
r€G,a€Ay Cp(p — Lf) h7

for some constant C'.

Proof. Let z € G with representation x = Efvzl pix; in barycentric coordinates. Since

ViF € VE, we have Vi (z) = Ef\il 1 Vi¥(x;). Then

N N
Vi) = Vi)] <) il Vi () = Vi) + D pal Vi) = Vi(a)). (15)
=1 =1
From (13) we have at the vertices x; for some control a € Ay,

ViE(@:) = Vilzy)| < e ViH(pualh) = Vi(@ua(h))]
< e sup [ViE(y) — Va(y)l.
yeG

11

The second expression in (15) may be estimated with the Lipschitz-continuity of Vj,. This
gives

\Vi(z;) — Vi(2)| < Lvk.

Together we have

Lvk
ViF(z) =V < .
Vi) = Vel < 7=
Bounding e~ from above by e™** < hp(X—1)+1, for h €]0, %[, and taking as Lipschitz-
constant Ly = pf}if, the assertion follows with ¢'=1 — % O

The methods of proof as developed in [12] can be applied here and yield the following

theorem.

Theorem 3 Let p > L¢, h €]0, %[Then

% k
IV — V| < C(Vh + ﬁ»

where C' is a constant independent of k and h.

4 Algorithms for learning

We now turn our attention to the actual real time learning algorithm. The problem here is,
that information at the vertices {z;} is not always available as demanded by the operator
P} defined in the last section. The update-algorithm itself cannot choose the position of
the sample points and will therefore have to work with information at arbitrary points in
(G. We give two possible solutions for updating the v jterate q” of the Q-function Q¥ in

points {z;}, when information is given in arbitrary points.

Definition 4.1 We call y € G a sample point at time 7, if the following information is

available.
yed . state at time T,
a €A, : action at time T,
z€ G = @yua(h), state at time 7+ h,
relRy = foh e " g(pya(T),a)dr, local cost .

12

Let G* = {zy,...,ox} and X = (21,...,2x)T, as before. For any x € G let A(z) =
(A (2),..., An(2)T be the barycentric coordinates of x with respect to X, i.e.

N
r = Z Ai(x)a; = A(:L')TX.
=1
We will also write for functions ¢ € WF
q(a) := (q(x1,a),...,q(x,,a))". (16)
We then get for any v € G, a € Ay,

g(z,a) = Az)"q(a).

We will also write

min(q) := (ming(1,0),....ming(xn.b))",
i.e. if ¢” is the current iterate of the Q-function, then min(q”) is the current iterate of
the optimal value function.
4.1 Algorithm with information in vertices

Lets assume, that y is a sample point and coincides with a vertex ;. In every time step

we then have the following algorithm.

Q — VERTEX(y, a,z,T)
determine ¢ € {l,...,N}: y=ua;
calculate A(z)
L . T v
Vimp = min A(2)7 4" (b)

update q”"’l(:lii, a) =r+ e_phvtmp (17)

This update corresponds to an operator

Wk k
By Wy = Wy,

13

(Pyoq)(x,b)=r+e AT (Z)min(q), if z=yandb=a
(Pyoq)(x,b) = q(x,b), if x#yandb+#a.

Py is only defined if y = @; for some ¢ = 1,..., N. It only updates the function ¢ in the
sample point y and control a. Since cost r and subsequent state z depend on starting state
y and control a, the operator P8 does not depend explicitly on r and z (this is different
in a stochastic setting, where the cost and the subsequent state depend stochastically on
y and a).

Note, that P)% is not a strict contraction with respect to the sup-norm. (contraction
number 1), since it acts only upon the vertex x; = y. The following definition defines a

contraction

_ ve
P = Myequlloen, P = ..o P50,

where every combination of z; € G* and a € A, appears exactly once. This corresponds
to a GauBl-Seidel-type iteration. We do not show, that the operator P, which depends
on the order of the operators PJ%, is a contraction. It is easily seen, that the fixed point

of P'® is the same as of Pf.

4.2 Algorithm with information in arbitrary points

Kaczmarz-Algorithm. Now we want to generalize P for arbitrary y € G. Given
a sample point y € G with coordinates A(y) and a € Ap. The coordinates of z shall be
A(z). We then define the operator (in vector notation as in (16))

(Pa)a) = gla) + [+ A (=) min(g) — A (y)gfa)]) (13)

(y)A(y)’

The value r + ¢ ?"AT(z) min(q) may be called the update value. The difference from
the old value AT (y)g(a) to the update value is weighted with the barycentric coordinates
A(y), and added to the values of g(a) in the vertices of the simplex which contains the
sample point. The Kaczmarz-update has the property, that the new iterate ¢(a) assumes

the update value at the position y. It holds that

(Praa)(y.a) = A ()(Pyag)(a))

= AT(y)g(a) + [+ €M AT(2) min(q) — AT (y)g(a) 22

AT(y)A(y) (19)

14

= r+ e_phAT(z) min(q).

The Kaczmarz-algorithm and the algorithm with information in vertices are identical, if
the sample point y is a vertex. If y = x; for some x; € G*, then A(y) = ¢;, the i-th unit

vector, and we have

(Praa)(a) =r+ e ™A (z) min(q) = (P}%q)(a). (20)

y7a

In every time step the Kaczmarz-algorithm takes the following form.

Q — KACZMARZ(y, a, z,T)
calculate A(y)
calculate A(z)
Vtmp 1= AT(Z) min(q)
Ay)

AT(y)A(y) ()

update ¢"'(a) := ¢"(a) + (r + e_phvtmp - AT(y)qy(a))

Since A(y) is the vector of barycentric coordinates of y with respect to X, it has only
n + 1 non-zero entries (number of vertices of a simplex), where n is the dimension of the
state space G C IR". The positions in which A(y) is zero, do not contribute to the new

value ¢ +1.

Lemma 4.2 The Kaczmarz-algorithm can generate an approximation with arbitrarily

high ||.||-norm, although the function to approximate is bounded.

Proof. Consider the interval [0, 1], and let u : [0, 1] — IR be the function to approximate.
We assume that we have only two vertices at & = 0 and & = 1. The approximating
function shall be ¢(&) = go+ ¢1€ on [0, 1]. For any two (distinct) data points (o, (; € [0, 1]
it holds, that with the Kaczmarz-algorithm applied alternately at (o and (;, the sequence

of iterates

() =q+q¢'¢ v=0,051,152...
with
1 — o

a7 = an + (u(o) - qy(fo))ma

15

Co
(1—Go)*¢’
B ()~) e
(1=t

G
(1—¢)*ct
will converge to a ¢(.) such that ¢({o) = u((o) and ¢(¢1) = u((y).

If now w is chosen, such that limg_o %u(f) = o0, then the Kaczmarz-algorithm applied

G = g+ (u(Co) — ¢ (o))

G o= @t 4 () = ¢ (G))

alternately at (, = 0 and (; €]0, 1] will converge to some approximation ¢(.) (depending
on (1). It then holds, that ¢(1) — oo for (; — 0. O

Figure 1: The Kaczmarz-algorithm has the
property, that it may produce an unbounded
sequence of approximations (function ¢ in the
figure), already if the function u to approximate
is bounded. Kaczmarz-iteration applied alter-
nately at two points (o, ¢4 will let the limit ¢
connect the data-points u((o) and u(¢y). -—

°% 1

Despite this property, the Kaczmarz-algorithm showed good numerical results. This
may be due to the fact, that the pathological situation from the example will rarely
occur. In practical situations, the sample points are distributed evenly in G. However,
the described property may still give problems, if Kaczmarz-algorithm is applied close to

singular points of the system.

Kronecker-Algorithm. The Kronecker-algorithm gives another solution to the prob-
lem of distributing a value inside a simplex to its vertices. It simply updates only in the
closest vertex.

Again let y € (G be a sample point, a € Aj,. Let A(z) be the barycentric coordinates
of z = p,.(h). Define E(y) = (e1(y), ..., en(y))T, where ¢;(y) = 1 if

Hlkiﬂ|$k - y| = |$]‘ - y|7

16

and 0 otherwise. Let r = r,(y,a). We then define the operator
(Piag)(a) = g(a) + E(y)[r + e™"AT(z) min(q) — A" (y)q(a)], (22)

and (Pg5q)(b) = q(b) if a # b.

The algorithm now takes the following form.

Q — KRONECKER(y, a, z, r)
calculate F(y)
calculate A(z)
Vimp := AT (2) minyea, q”(b)
update ¢"*'(a):= ¢"(a) + (r + e v, — ¢"(a)) E(y)
(23)

Concerning convergence, the Kronecker-algorithm is similar to the algorithm with

information in vertices.

Lemma 4.3 Let Y = (y1,...,Yn), where y1,...,y, € G is a set of sample points, such
that for every vertex x;, 7 € {1,..., N} there is a unique yy such that

lz; — yi| = ml.iﬂ|$z’ — Ykl

For easier notation, the corresponding points and vertices shall have the same index, such
that |x; — y;| = min, |z, — y;|. We will also assume, that for every y; and every a € Ay
we have costs r,(y;,a). Let

kr ,_ kr
P] «— HaeAh yJ7a’7

i.e. P updates a Q-function in all controls a € Ay in the point y;. Then the iteration

operator

Pgﬁr = Plkr 0...0 P}@r (24)

is a contraction and for any ¢° € WY we have convergence of ¢, v — oo, where

= Py (25)

Proof. It is easily seen, that by the assumption of unique correspondence of y;

to x;, the operator P¥™ is a contraction with respect to the ||.||[-norm in WF. From the
fixed-point theorem we therefore have convergence of ¢"*' = P¥q". a

Generalizations of Lemma 4.3 may be formulated, e.g. the following Corollary.

17

Corollary 4.4 Lemma 4.3 holds also, if for every vertex x;, 3 =1,..., N there is a set
of sample points {y? }aca, with

|$j—y?| :miﬂ|$i—y;‘|, for all a € Ay,
The operator P}‘r will then have to be defined as

kr ,__ k
PX = e, P

a .
y]

The fixed point gy = Pf gy clearly depends on the set of sample points {yj}év:l. The
difference between gy and QF is, that they are fixed points for different sets of sample

points. With the given notation we actually have
QF =qx, X =(x1,...,2,).

We are interested in estimating the value ||min(gy) — min(Q%)|| for some fixed point
qy = P¥qy with a given set of sample points {yj}év:l satisfying the conditions of Lemma
4.3.

Theorem 4 Let Y = (y1,...,yn)T be the tuple of points {y;} satisfying the conditions of
Lemma 4.3. Let Vy = min(qy), where qy = P¥(q) and let Vi¥ be as defined before. Let
V¥ be Lipschitz-continuous with Lipschitz-constant Ly > 0. If p > Ly, then the following

estimate holds

k
sup [V () = Vi (=) < Ok + 1) (26)
z€G h
for a constant C'.

Proof. We introduce the following notation for costs and subsequent states. Define the

column vector Ry (a) for every a € Ay, 1=1,..., N

h
(Brlalli= [¥ alpa(r).ald,
0
and the N x N-matrix Ay(a) holding the barycentric coordinates of the ¢,, , such that
[Ay (@) X]i := pyiah) (27)

and similarly define Ry (a) and Ax(a).

18

For V4 and th we have

V(i) = L{g}i{ﬁ’y()+ e Ay (a }
Vii(zi) = L{ggi{ﬁ’x()+ e Ax(a } .., N.

The points y; have the property |y; — ;| < k for all i = 1,..., N. The difference of local
costs Ry (a) and Ry (b) for minimizing controls a,b € A, may be estimated by

[Rx(a) — Ry(B)]:] < / e |g(Pera(r),) — g(aya(r). B)]dr

h
0

< L,kh. (28)

IA

To estimate |[Ay (a)Vy — Ax (b)VE];], we take
| fria(h) = pyp(h)| < |a; — yile™" < kel r" =: e,
i=1,...,N, and the Lipschitz-continuity of V* (v,w € G), to get
W (@y,a(h) = Vi (@ura(h))]

< k
< max max [V (v) = V()]

< max max [V (v) = ViE(u)| 4+ Vi (0) = Vi (w)]
< max V(o) = VA + Lve. (29)

Together with (28) and (29) we get

max [y (v) = V(o) < Lykh + e (Lyke" ™" 4 max Vi (v) = Vi (0)]),
we

veEG

or

k(Lyh + Lyels=rk)

vk g

ma |V () — Vi)] < UL L ETT)

We can estimate ;——7 < thc with ¢ = (1 — 1) for h €]0, [and eFr=h <1,
Together we have

L, kL
Ve — VE| < k=2 4 =2
cp hoep

19

This lets the constant C' be equal to é max{L,, Lv}.
O

If actual learning is performed in real time, then a fixed set of sample points ¥ will
not be given, of course. The sample points may be located along the trial trajectory and
will be distributed rather arbitrarily. In the investigation of properties of the Kronecker-
algorithm we want to prove a result, which states that V3 for a given set of points YV
sufficing the assumptions of Lemma 4.3 lies inside a certain region which may be specified.

We first introduce some notation. Define
box(z;):={6 € G : |o;, = ¢ <|oej—¢&| forall j=1,..., N},
and for any point ¢ € G we write

box (&) := U box(x;), for all the ¢ with £ € box(x;).

For any y € G define the operator T} as
T, : A VL

(T,0)(z:) = { minmyea, {rr(y,0) + e " v(pyp(h))}, if 2; € box(y) (30)

v(a;), else .

Theorem 5 Let V, and V™ be the fized points in V* of

Vi(z;) = inf T,Vi(x;) (31)
yebox(z;)

Vi) = sup T,V*(x:), z; € G (32)
yebox(z;)

Then for any v € V* with
V<o <Vr (33)

we also have for all y € G
V. <Typo <V~ (34)

For a set of points Y = (y1,...,yn) let Vi = min(qy), where gy = Py (qy) is the fized

point as before. Then a simple consequence of (34) is

Vo<W <V (35)

20

In particular,

V. <VE <V

Proof. [t is straight forward to show that (31) and (32) are fixed point equations with
respect to the maximum norm in V*, in particular V., V* € V*. Now let V, be a function

sufficing (31). Let v € V* with (33). With the monotonicity of T, we get
Vi(z;) = inf T,Vi(z;) < inf Tyo(x;) < To(a), (36)

yeboX(z;) yebox(z;)
and analogously T,v(x) < V*(x).

O
We have now established a region, in which a value function V3 must lie for a set of

test points ¥ as in Lemma 4.3. In the following Theorem we prove a result about the size

of this region.

Theorem 6 Suppose that V* and V. are Lipschitz-continuous with some constant Ly
(since V* and V. are both bounded above by % and by zero below, and V*, V. € V* we
can say that Ly <]\:—;) Then the following a priori estimate holds:

(L. + Lv)k

1 —erh

Ve =W < (37)

Proof. Since V* V, € V¥ if is sufficient to estimate the difference for all ; € G*. We
will write ¢, . = ¢, q(h). Let x; € G*. For some points y, z € box(x;) and some control
b € U we have

V¥ () = Vi(x;) = max T,V*(x;)— min T,Vi(x;)

vEboz(z;) vEboz(z;)

min{ri(y @) + ¢V (pya)} — minfra(z @) + € Vilpon))

<y, b) — (2, 0) + e (VA (pyp) — Vilo2))
< Loly = 2|4+ (Vi (pyp) = Vi) + Vloyp) = Valpop))
< Lok + e (Vi(pyp) = Vilyp)) + Lvly — 2]
< Lik+e zugw*(o — V() + Lvke™ "
S

21

We may now take sup,cs on both sides and get

(L, + Lyl

y k
Ve — i) < S

O
The Lipschitz-constant Ly = J}f_pg grows with decreasing grid size k. We show, that

under some condition, Ly can be chosen independently of k. This allows to conclude,

that ||V* — V.|| = 0 for k — 0.
Proposition 4.5 Assume, that for any two vertices x;,x; we have an o €]0, 1] with
ak <z, — x4

Also assume, that %e(Lf_p)h < 1. Then V* and V. are Lipschitz-continuous with constant

L,

2
Ly = a 11— %e(Lf—p)h'

Proof. Theorem 5 stated, that V* and V, are fixed points in V*. We will show, that if
for some V' € V¥ it holds that |V]o; < Ly, then also

inf TyV(J}Z) < LV

yebox(z;) 0,1

(and sup respectively). This shows, that because of uniqueness of V. (and V*) and
closedness of C%(() the proposition holds. Again, since V., € V* we may consider two

adjacent cells box(x;) and box(x;) with centers x;, x;,. We get

inf TVo(zj) = inf T Vi(ai)| = [ToVilzg) — T, Vel

ZEbOX(l’]) yebox(z;)

where on the right hand side we assume the existence of a z € box(z;) and y € box(z;),
such that the infima are obtained in z,y, respectively. Furthermore, we may assume the

existence of a b € Ay, such that

T Vi) = TVal(as)| = |ru(z,0) + ¢ " Vilpop) — raly, b) — e Viloyp)]
= |ra(z,b) = ra(y,b) + e (Vi(pzp) — Viloyp))]
< e —yl(Le + B Ly,

22

We now estimate
2 2
|z —y| <2k = —ak < —|z; — 2.
o o

We may now substitute Ly and with the assumption %e(Lf_p)h < 1 we get

2L,

yebox(z;) 0,1 o

L,

2
inf T,V (x;) < 1+ ellr=ph 2,
o

L,

2
a 1 — 2eLg=p)h

= Ly.

5 Numerical experiments

We performed learning experiments with a linear oscillator with controllable amplitude.

The system equation has the following form

i = fly,u) = (ool) (y—v), v= (o) L yeG=[01]x[0,1], uel-ed
(38)
The stationary point of the uncontrolled system is v. The eigenvalues of the system are
{u+1i,u—1}.
At the boundary the system trajectory shall be projected onto the boundary. The
right side of (38) therefore takes the following form at the boundary

| min{0;uy; +y2} falls y; =1 (39)
= max{0;uy; + y2} falls 3, =0

.) min{O;uy, —y1} falls yo =1
¥2 = { max{0;uy; —y;} falls y,=0 "~ (10)

The goal of the optimal control shall be steer the solution along a given trajectory in

state space (see figure 2). The reinforcement or cost function is therefore chosen to be
: 1
g(y) = dist(L,y)z2, (41)

where [denotes the set of points in the trajectory. We took the square root of the

distance, to penalize stronger when close to the given trajectory. This speeded learning

23

up. Note that the restriction of ¢ to a grid is still L-continuous (as a function in V*). The

cost Tunctional takes the form
T (y,ul.)) = /0 " g2ty (7)) (42)

For the simulation of the system (38) during the learning phase and also for calculation
of the optimal value function V' we discretized (38) with the implicit mid-point rule. Let

Y, € G be the nth state of the discrete time system. Then we have

1

0.51

0 ‘ § 02 01 0’6 '8 i
X

0 0.5 1

Figure 2: L-form of the given trajectory. The stationary point of the system is at (.375,.375)
(depicted as a big dot). The right picture shows the cost function g.

Because of the special form of f(.,.) the implicit mid point rule may be formulated in
an explicit form (see [15] for details).

The value of the local cost
R
)= [gl (44)
0

was approximated by the trapezoidal rule

Paper() = 3{0() + < g()) (15)

24

The state space was discretized in regular simplices with k = 27" n = {3,4,5,6,7,8}.
The discount rate was chosen as p = 5. Is is clear that large discount rates give faster

learning rates.

The following pictures show the mean distance of the system trajectory from the given
L-form in one round, depending on the time steps that have passed. The dotted line shows
this value when the optimal value function V}* was used for controlling the process. The
other line shows this value during the learning process.

The first two of the following pictures show a comparison between Kaczmarz- and
Kronecker-iteration. In most experiments (using different & and h) the Kaczmarz-Algorithm
seemed to be more stable (the mean is closer to the dotted line). For this reason we sub-

sequently used Kaczmarz-Iteration.

Q-learning with Kronecker-iteration, grid 3 Q-learning with Kaczmarz-iteration, grid 3
0.45 0.45
Q-Learning R-learning
alcylated 1 calculated -

04 0.4 +
0.35 0.35
0.3 0.3
0.25 0.25
0.2 0.2 -
0.15 0.15 ‘
on b on b WM
0.05 R 0.05

(o] (o]

1000 10000 100000 let+06 1000 10000 100000 let+06

time steps time steps

Figure 3: Difference between Kronecker- and Kaczmarz-iteration on a grid with £ = 1/2" and
h=0.2.

25

grid 7, time steps 0.01 grid 8, time step 0.005

0.45 0.45
Q-learning —— i nd|——
calculated - lged |-
0.4 r 1 0.4
0.35 ¢ R 0.35
0.3 0.3
0.25 r 1 0.25 r
0.2 1 0.2
0.15 ¢ 0.15 ¢
0.1 0.1
0.05 + mlm 0.05
O T] (0] -
1000 10000 100000 1000 10000 100000 le+06
time steps time steps

Figure 4: Learning with small time and space discretization approximates the optimal value
well. The learning phase increases with decreasing discretization.

The last two pictures show the learning behavior for a very fine discretization. The
relationship of time to space discretization was chosen as in Theorem 3. These pictures
suggest, that learning could be accelerated, if the value function was approximated on

a coarse grid first, and then the grid was refined. A preliminary result of this kind is

described in [16].

6 Conclusions

We have investigated theoretically and numerically the behavior of two approximation
schemes for)-learning. The theoretical results may be used to define an error estimate
(see [16], [17]) for local grid refinement. Local values of V* — V, are used here.

Numerical experiments show, that with correct values for time and space discretiza-
tion an accurate control may be learned. The specific choice of function approximation
(Kaczmarz or Kronecker), however, makes a difference and is crucial.

Since a—priori information about the system and the cost function is not given to the
controlling agent, he will have to experiment with different values of the discretization

values k& and h. Further research is directed towards an automatic detection of the op-

26

timal choice of the discretization parameters without a—priori knowledge of the system.

Adaptive— and multi—grid algorithms for learning are also in current investigation.

References

1]

[9]

A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic program-
ming. Al Journal on Computational Theories of Interaction and Agency 72:81-138,
1995.

A. G. Barto and R. H. Crites. Improving elevator performance using reinforcement
learning. In M.E.H.D.S. Touretzky, M. C. Mozer, editor, Advances in Neural Infor-
mation Processing Systems 8, MIT Press, 1996.

S. Bradtke and M. Duff. Reinforcement Learning Methods for Continuous-Time
Markov Decision Problems. In NIPS-94, 1994.

F. Camilli and M. Falcone. An approximation scheme for the optimal control of
diffusion processes. Technical report, Universita degli Studi di Roma ”*La Sapienza”’,

1992.

P. Dayan and T. Sejnowski. TD(A) converges with probability 1. Technical report,
Skripps Institute San Diego, 1992.

T. Dietterich and W.Zhang. A reinforcement-learning approach to job-shop schedul-
ing. In Proceedings of the 14.th International Joint Coference on Artificial Intelli-
gence, 1995.

[. C. Dolcetta. On a discrete approximation of the Hamilton-Jacobi equation of

dynamic programming. Appl Math Optim 10:367-377, 1983.

I. C. Dolcetta and H. Ishii. Approximate solutions of the Bellman equation of deter-
ministic control theory. Appl Math Optim 11:161-181, 1984.

K. Doya. Temporal difference learning in continuous time and space. In NIPS 8,

1996.

27

[10]

[11]

[12]

[13]

[14]

[17]

M. Falcone. A numerical approach to the infinite horizon problem of deterministic

control theory. Appl Math Optim 15:1-13, 1987.

W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solu-
tions. Springer-Verlag, 1993.

R. Gonzalez and M. Tidball. On the rates of convergence of fully discrete solutions
of Hamilton-Jacobi equations. INRIA, Rapports de Recherche, No 1376, Programme
5, 1991.

L. Grune. Numerische Optimale Steuerung und Stabilisierung. Master’s thesis,
Universitat Augsburg, 1993.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, Volume

21, 1995.

S. Pareigis. Lernen der Losung der Bellman-Gleichung durch Beobachtung von kon-
tinuterlichen Prozeflen. PhD thesis, Universitat Kiel, 1996.

S. Pareigis. Adaptive choice of grid and time in reinforcement learning. In Proceedings

of the International Conference on Neural Information Processing Systems, to appear,

1997.

S. Pareigis and M. Riedmiller. A hybrid grid refinement scheme for reinforcement
learning based on local defect correcting methods. Technical report, Lehrstuhl Prak-
tische Mathematik, Universitat Kiel, 1997.

R. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning 3:9-44, 1988.

C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning 8:279-292,
1992.

28

